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Nomenclature 
 

 
 

Roman symbols 
a contact radius [m] 
A area of contact [m2] 
An nominal contact area [m2] 
c constant [-] 
cv radius of the stick area [m] 
d separation [m] 
E elasticity modulus [Pa] 
Fn normal load [N] 
Ft tangential load [N] 
g elasticity of the spring [Pa] 
G shear modulus [Pa] 
G* complex shear modulus [Pa] 
G' storage modulus [Pa] 
G" loss modulus [Pa] 
hi thickness of the interfacial layer [m] 
H Heaviside step function [-] 
k curvature [m-1] 
Ks kurtosis [-] 
L length [m] 
n number of summits per unit area [-] 
N normal load [N] 
p pressure [Pa] 
pn nominal pressure [Pa] 
r radius [m] 
R radius  [m] 
Ra center line average surface roughness [m] 
s summit height [m] 
s slip [m] 
sa average summit height [m] 
Sk skewness [-] 
t time [s] 
T temperature [°C] 
v velocity [m/s] 
W12 work of adhesion [J/m2] 
z surface height [m] 

 
Greek symbols 
α angle of the inclined plane [rad] 
β average summit radius [m] 
γ surface free energy [J/m2] 
γ shear strain [-] 



Nomenclature  

  

δl limiting displacement [m] 
δt tangential displacement [m] 
ε strain [-] 
η summit density [m-2] 
η viscosity of the dashpot [Pa⋅s] 
μ coefficient of friction [-] 
μs coefficient of static friction [-] 
μd coefficient of dynamic friction [-] 
θ contact angle [º] 
ν Poisson’s ratio [-] 
φ(s) summit height density [-] 
φ(t) creep compliance [Pa-1] 
ψ(t) stress relaxation function [Pa] 
σ stress [Pa] 
σ standard deviation of the surface heights [m] 
σs standard deviation of the summit heights [m] 
τ shear stress [Pa] 
tan δ loss tangent [-] 
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Chapter 1  
 
 

Introduction 
 
 
1.1 Motivation and objectives of the thesis 
 
Numerical simulation of manufacturing processes such as rubber pad forming 
has been introduced in order to avoid the trial and error procedure used in past 
for finding and solving the problems encountered in production. Better 
understanding of friction between tool and workpiece (included in the numerical 
simulations for instance) may have significant contributions with respect to the 
prediction of quality of the surface of the products and to the life-time of the 
tools. 
 A limiting factor in finite element simulations of rubber pad forming 
processes is an accurate description of the static friction occurring at the 
workpiece-tool contact interface. The (local) contacts occurring in rubber pad 
forming processes can be reduced to two basic contact situations, namely:   

1) metal-sheet/tool contact and  
2) rubber-tool/metal-sheet contact.  

The research described in this dissertation focuses on the second contact 
situation, dealing with an interesting and not very well understood phenomenon 
– the static friction between rubber pad and metal sheet.  

The aims of the thesis are to develop a physically based static friction 
model for rubber-metal contacts and to validate this model experimentally.  
The implementation of the static friction model in finite element packages will 
be a further step towards transferring static friction knowledge to industry. 
However, this follow-up step is not part of the objective of this thesis. 
 
 
1.2 Tribology in metal forming processes  

 
The term tribology originates from the Greek word “tribos”, meaning 

rubbing. Despite this, the contemporary significance of tribology as science 
comprises studies of two interacting surfaces in relative motion, and of related 
subjects. The concern about reducing friction during transport of different 
materials in order to spare effort has existed from ancient times. However, the 
conception of tribology as science can be attributed to Leonardo da Vinci (1452-
1519), who postulated for the first time a scientific approach of friction. Known 
also as dealing with friction, lubrication and wear of interacting surfaces, 
tribology is involved in most of the practical applications. Therefore, a better 
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understanding of the mechanisms occurring in friction of surfaces in contact, 
either in dry or lubricated conditions, brings significant benefits.  

This dissertation deals with static friction in rubber-metal contact, with 
application to rubber pad forming processes. A description of this process and 
the relevance of static friction in the process is given in the following sections. 
 
1.2.1 Rubber pad forming processes 

 
Rubber forming process, defined as a deep drawing technique in which one of 
the tools is replaced by a rubber pad, had its beginning at the end of the 19th 
century. The technique is mainly used in aircraft industry or for fabrication of 
prototypes. The advantages of using flexible tools instead of conventional 
metallic tools are: (i) the flexible pad can be used for several different shapes of 
workpiece; (ii) the alignment and mismatch problems are eliminated; (iii) 
lubrication is usually not needed; (iv) the damage of the workpiece surface in 
contact with the flexible pad is avoided. However, there are some drawbacks, 
such as: (i) a higher capacity press is usually required; (ii) the tendency to form 
wrinkles in some processes; (iii) the life time of the flexible pads is limited. 

Rubber forming can be divided into three main categories: rubber pad 
forming, fluid cell forming and fluid forming. Among these processes, the Guérin 
process (Figure 1.1.a) is the oldest and simplest. A box able to sustain forming 
pressures of 50-140 MPa [34] and containing a rubber pad (usually an elastomer 
with hardness of 60-75 Shore), can move relative to a punch made of wood, 
plastic or light alloys. The Marform process, provided with an additional steel 
blankholder, is used to obtain deeper parts with no wrinkles, see Figure 1.1.b. 
 

  
The main components of the rubber pad forming process are schematically 
shown in Figure 1.2.  

Fig. 1.1. Rubber pad forming techniques: (a) Guérin process; (b) Marform 
process, from [27]. 

(a) (b) 
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The container which contains the rubber pad descends applying equal pressure 
onto the blank. The rubber deforms, filling the empty cavity, thereby inducing 
conformation of the blank over the die. 

In aircraft industry most of the sheet metal parts such as frames, seat 
parts, ribs, windows, and doors are fabricated using rubber pad forming 
processes. In other industries, for instance automotive industry, this process is 
mainly used for prototypes or pilot productions. 
 
1.2.2 Static friction in rubber pad forming processes 
 

In practice static friction is usually associated to the “stick” of surfaces in 
contact, i.e. the pre-sliding friction, which can be the source of various problems 
in production. In rubber pad forming processes static friction might affect the 
accuracy of the product shape, it determines non-uniform plastic strains, it can 
be a source of noise, and it is also a dissipative process in which energy is lost as 
heat and/or hysteresis in the case of rubber. Therefore, static friction is normally 
not desired in metal forming.  
 
 
1.3 Static friction and tribological system 
 
1.3.1 Static friction - introduction 
 

Friction can be separated into two regimes, i.e. the static friction and the 
dynamic friction regime. In the static friction regime, the friction force increases 
with increasing tangential displacement up to the value necessary to initiate 
macro-sliding or gross-sliding of the bodies in contact, as depicted in Figure 1.3.  

Rough rubber-tool/ smooth 
metal sheet  

F

F

pad 

   blank 

  die 

Fig. 1.2. Rubber pad forming – main components; tribological system. 
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Although, the bodies are macroscopically in rest, a micro-displacement, which 
will be called preliminary displacement, occurs at the interface which precedes 
the gross sliding situation. This micro-displacement can reach relatively large 
values when one of the surfaces in contact has a low tangential stiffness 
compared to the other surface, as for instance in the rubber-metal contact. The 
main characteristic parameters of the static friction regime are the maximum 
static friction force at which macro-sliding initiates and the corresponding 
micro-displacement.  
A comprehensive analysis of the mechanisms and parameters involved in this 
preliminary stage of friction is presented in Chapter 2. 
Once the bodies are set in motion, a certain force is required to sustain it. This is 
the dynamic friction force which belongs to the dynamic friction regime. 
 
1.3.2 Static friction and tribological system 

 
Static friction is investigated in this thesis in relation with a tribological system. 
The tribological system is composed of the rubber tool, the workpiece (blank), 
the die and the environment, as illustrated in Figure 1.2. The contact between the 
rubber tool, which is considered rough, and the metal sheet regarded as smooth 
surface is investigated with respect to the static friction parameters. For this 
contact situation the adhesion component of friction is of importance due to the 
mechanism assumed for static friction, therefore the ploughing component is 
neglected. More information regarding the tribological system is provided in 

Inception of macro-sliding 

Static friction 
force 

 Friction 
force 

Tangential 
displacement    Micro-displacement 

Dynamic friction 
regime 

   Static friction 
regime 

Fig. 1.3. Friction force versus tangential displacement; friction regimes. 
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Chapter 3.  
Several parameters such as roughness and cleanliness of the surfaces in 

contact, contact pressure, contact (or dwell) time and stiffness of the softer 
material influence static friction and can be used to reduce it. For instance, 
rougher and contaminated surfaces result in lower static friction.  
Thus, the strength of the interface as well as preliminary displacement before 
macro-sliding will be modelled. Relatively simple material models have been 
chosen for the rubber pad and interfacial layer. This implies that effects as 
Schallamach waves or Mullins’s effect are not taken into account. 
 
 
1.4 Outline of the dissertation 
 

This dissertation deals with a specific application of tribology, the static 
friction in rubber-metal contact as present in the rubber pad forming process. 
The motivation and the aims of the research are introduced in this chapter 
together with the background concerning the related industrial application, i.e. 
rubber pad forming process. 

Chapter 2 deals with definition, mechanisms and parameters 
characterizing static friction. The parameters required to define the static friction 
regime are introduced, starting with a short historical background of friction. The 
mechanisms responsible for static friction as well as for dynamic friction are 
presented. Then, the influence of several parameters such as pressure, tangential 
displacement, roughness, contact time, and temperature on this preliminary 
stage of friction is discussed. A literature survey is presented in this respect for 
the material couples which are of interest in rubber pad forming, specifically: 
rubber/metal and metal/metal. 

In Chapter 3 the tribological system is reviewed and the relevant properties 
of the contact between rubber pad and metal sheet are discussed with respect to 
the material and the surface properties. The viscoelastic properties of the rubber 
pad and related measurement techniques are presented. Since adhesion is 
important in friction of rubber-like materials, the surface free energy of materials 
in contact has been investigated. Surface roughness plays a significant role in 
contact, thus in friction between the rubber pad and the metal sheet. Therefore, 
surface roughness parameters are introduced together with measurement 
techniques. Depending on the relation between the real contact area and the 
apparent contact area, various approaches can be used to model the contact 
between the rubber pad and the metal sheet. These approaches are briefly 
discussed.  

The single-asperity static friction model is discussed in Chapter 4. First, 
the normal contact between a viscoelastic sphere and a rigid flat is modeled 
using a modified Hertz theory, in which the viscoelastic behavior is incorporated 
through a mechanical model. Then, when a tangential load is subsequently 
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applied, a mechanism similar to that described by Mindlin’s theory [3] is 
assumed to take place in the contact area. At low loads adhesion plays an 
important role. Its effect has been modeled according to the Johnson-Kendall-
Roberts theory [43], in which a factor has been included that accounts for the 
work of adhesion of viscoelastic materials. Friction is attributed to the shear of 
the interfacial layer which separates the bodies in contact.  The developed static 
friction model is based on the above-mentioned contact models. Furthermore, a 
parametric study is presented regarding the influence of several parameters on 
the static friction force and limiting displacement.  
 In Chapter 5 the theoretical investigation of the static friction between 
rubber and metal surfaces is described. It has been emphasized in Chapter 3 that 
surface roughness plays a significant role in the contact and friction between 
surfaces. Thus, the single-asperity static friction model is extended to the multi-
asperity case, first, by using a statistical approach. This multi-summit approach 
is usually suitable for cases where the real contact area is a small fraction of the 
apparent contact area. Next, a multi-asperity approach is used further in 
modeling static friction between a rough viscoelastic surface and a smooth rigid 
plane. Finally, the results obtained using these two approaches are compared.  
 The experimental validation of the developed single-asperity and multi-
asperity static friction models is presented in Chapter 6. Single-asperity friction 
measurements have been carried out on a nano-tribometer using a ball-on-flat 
configuration. The influence of several parameters such as normal load, radius of 
the ball and Shore hardness upon static friction was examined. Then, the multi-
asperity static friction model is validated on a tribometer. The experimental 
results are presented in comparison with the theoretical predictions.  
 In Chapter 7 the developed static friction model is discussed in relation to 
static friction and limiting displacement in a rubber pad forming process. 
 The conclusions and recommendations resulting from the theoretical and 
experimental investigations of the static friction in rubber/metal contact are 
presented in Chapter 8. 
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Chapter 2  
 
 

Static friction 
 

Introduction 
 

This chapter deals with definition, mechanisms and parameters 
regarding static friction. Starting with a short historical 
background of friction, the parameters required to define the 
static friction regime are introduced. The mechanisms responsible 
for dynamic friction as well as for static friction are presented. 
Then, the influence of several parameters such as pressure, 
tangential displacement, roughness, dwell time, and temperature 
on this preliminary stage of friction will be discussed. A literature 
survey is presented in this respect for the two couple of materials 
of interest, rubber/metal and metal/metal. 

 
 

2.1 Friction and coefficient of friction 
 
Friction is resistance to motion experienced when one body is moving over 
another.  
Due to the difficulties encountered in practice, friction has been explored since 
ancient times. The first recorded studies on friction are dated in fifteenth century 
and belong to Leonardo da Vinci (1452-1519), see Figure 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.1. Leonardo da Vinci’s sketches regarding studies on friction, (from [1]). 



Chapter 2 

 -8- 

His observations became two hundred of years later two of the well-known laws 
of sliding (dynamic) friction introduced by Guillaume Amontons (1663-1705), 
namely: 
1. Friction force is directly proportional to the applied load.  
2. Friction force is independent of the apparent area of contact. 
Leonardo da Vinci introduced also the concept of coefficient of friction (μ) as the 
ratio of the friction force Ff to normal load N: 
 

μ = Ff/N                                                                                  (2.1)    
 
Johann Andreas von Segner (1704-1777) was the first who made distinction 
between static and dynamic (or kinetic) friction.                                                               
The easiest set-up to understand static friction consists in a body placed on an 
inclined plane (Figure 2.2) as proposed by Leonhard Euler (1707-1783).  
 

 
The force which maintains the body in rest (no macroscopic relative motion) on 
the tilted plane is the static friction force. The force needed to initiate gross 
sliding is the maximum static friction force Fs. The dynamic friction force Fd is 
the force required to sustain motion. The coefficient of friction can be also 
defined as the tangent of the angle of the inclined plane. The body will remain in 
rest for an angle θ  less than a certain value α and it will start sliding down if the 
inclination angle exceeds α. Writing the load balance equations for the body 
from Figure 2.2, the coefficient of static friction is given by: 
 

μs =Fs/N =W⋅sinα/W⋅cosα  = tan α               (2.2) 
 
The coefficient of static friction is typically larger than the dynamic one, but it 
can be also equal to the coefficient of dynamic friction. 
More detailed experimental studies on friction were conducted by Charles-

Fig. 2.2. Forces acting on a body in sliding motion.

    → 
    W 

N 
→

Ff 

→

θ



Static friction 

 -9- 

Augustin Coulomb (1736-1806) who completed the laws of friction with the third 
law: 
3. Dynamic friction force is independent of the sliding velocity.  
These empirical laws have been proved to be valid under certain conditions for 
many material couples. However, these laws are not valid for all material 
couples. 
For instance, the coefficient of friction between polymers sliding against 
themselves or against metals or ceramics decreases by increasing the normal 
load (i.e. contact pressure), which is in contradiction with the first law. 
The third law is also not obeyed in contact between polymers and other 
materials. A typical curve indicating the dependence of coefficient of dynamic 
friction on velocity is shown in Figure 2.3. At higher velocities the rubber 
becomes stiffer, then the contact area decreases determining a reduction of the 
coefficient of dynamic friction. 
 

 
Although the above-mentioned laws are generally called laws of friction in fact 
they were obtained empirically using dynamic friction data.  
 
 
2.2 Static friction regime 
 

Figure 2.4 typically describes the relation between the friction force and 
the tangential displacement between two contacting bodies.  
Before macro-sliding or gross-sliding is initiated, micro-slip occurs at the 
interface. A distinction must be made between slip s, denoting relative 
displacement of adjacent points on a portion of the contact surface, and micro-
displacement δ, a term used for relative tangential displacement of points 
remote from the contact, as shown schematically in Figure 2.5.  

 

v [m/s] 

 μd [-] 

Fig. 2.3. Dependence of coefficient of dynamic friction 
on velocity (rubber friction). 
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This micro-displacement will be called preliminary displacement 

(Verkhovskii, 1926). The maximum value of the preliminary displacement, just 
before gross sliding, is the limiting displacement denoted δl and corresponds to 
the maximum static friction force. After this initial stage of friction, macro-
sliding (gross sliding) takes place and the dynamic friction regime is entered, see 
Figure 2.4. 

 

 
 

δl 

Fn 

Ft 

Fig. 2.5. Tangential displacement remote from the contact of two 
spheres normally and tangentially loaded. 

δ 

s 

    x 

   y 

Fig. 2.4. Friction force vs. tangential displacement.

preliminary 
displacement 

Tangential 
displacement [m] 

Friction     
force [N] 

δl, limiting 
displacement 

Fs, maximum 
static friction 

force 

Static 
friction 
regime 

Dynamic 
friction 
regime 
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2.3 Friction mechanisms – dynamic friction 
 
At a microscopic scale, friction is mainly caused by adhesion and deformation 
and can be written as: 
  

Ff = Fadhesion + Fdeformation                                                  (2.3) 
 
Depending on the materials in contact, these two factors can be caused by 
different mechanisms. 

According to Tabor and Bowden [28], dry friction between metals can be 
attributed to adhesion and deformation (or ploughing). The adhesion 
component of friction occurs while trying to shear local “welded” areas between 
contacting asperities. Adhesion is not the only resistance encountered during 
motion of one body over another. If one of the surfaces in contact is harder and 
rougher than the other one, the hard one will plough through the soft surface 
giving rise to the deformation term of friction. The magnitude of the force is 
strongly dependent on the geometry of the ploughing body and the hardness of 
the softest body. The energy is dissipated in this way by plastic deformation.  

Rubber friction has also a component due to adhesion and one due to 
deformation. The adhesion term is regarded as a surface effect and occurs during 
making and breaking of bonds on a molecular level. The deformation 
component, also called hysteresis friction, is caused by the delayed recovery 
(viscoelastic behavior) of the deformed rubber. The energy is dissipated through 
the internal damping in the rubber bulk, therefore is considered a bulk property. 
Nevertheless, it is experienced as a resisting force to the movement of one body 
relative to the other body at the interface. An insight into the molecular 
dissipation mechanisms shows that there are three main ways, namely: through 
chemical mechanisms, phononic dissipation and electronic dissipation [27]. The 
chemical mechanism involves energy associated with the breaking of chemical 
bonds. The phononic dissipation is related to the atomic vibrations within the 
bulk material and is associated with frictional heating. The electronic dissipation 
involves the excitation of electrons at the sliding interface.       
 
 

2.4 Static friction mechanisms 
 
A few mechanisms have been found in literature indicated to be responsible for 
static friction. These mechanisms might involve elastic deformation or plastic 
deformation of the softer material in contact or local welding or creep of 
asperities. They will be presented in the following for the contact between metals 
as well as for the contact between rubber and metal (regarded as rigid). 
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2.4.1 Static friction mechanisms in metal-metal contact 
 

Most studies on static friction relate the static friction force to the 
tangential displacement before sliding on macro-scale occurs. Rankin [2] found 
experimentally that a preliminary displacement does exist before the point of 
sliding is reached. In his experiments carried out on flat surfaces of steel in 
contact with cast iron this displacement was elastic. In the experiments of 
Verhovskii [2], performed on flat contact surfaces of various metals, the 
preliminary displacement was non-elastic. 

The static friction mechanisms found in literature for metallic materials in 
contact are described below. They are essential for the understanding of static 
friction. 

• The static friction regime has been analyzed for steel sliding on indium 
by McFarlane and Tabor [25]. A depiction of the process involved in this 
preliminary stage of friction is presented in Fig. 2.6. When a normal load Fn is 
applied to the steel ball in contact with an indium block, the material will start 
to flow until the contact area is large enough to sustain the load. Metallic 
junctions are created in the real areas of contact. Subsequently, a tangential 
load is applied. Even for a very small tangential load Ft1, tangential flow is 
initiated since the junctions are already plastically deformed by the normal 
load. The displacement caused by the tangential flow will determine a further 
increase of the contact area. Increasing continuously the tangential load, the 
junction size increases until the rate of increase of the tangential load is larger 
than that of the junction area, at which point macroscopic sliding initiates (Ft 
= Ftmax).  

 
Further experiments were carried out by Courtney-Pratt and Eisner [26] on 
two contacting specimens of the same material such as gold, platinum, tin, 
indium and mild steel. In their experiments a spherically ended cone was 

Ft2 

Fn Fn 

Ft1 Ftmax 

Fn 

Fig. 2.6. Mechanism of static friction in metal - metal contact. Junction 
grows with increasing tangential load Ft2 > Ft1 (static friction regime); 

macrosliding inception at Ft = Ftmax. 
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loaded against a plane and the displacement of the metallic bodies was 
measured. The results confirm the theory presented by McFarlane and Tabor. 
They also emphasized that the plastic deformation process determines the 
build-up of the friction force while the surface interaction is responsible for the 
final magnitude of the static friction force. Accordingly, the film of 
contaminants reduces the maximum friction due to the reduction in contact 
area.  

• Chang and co-workers [4] assumed in their theoretical static friction 
coefficient model for metallic rough surfaces that only the asperities which 
have not reached their elastic limit can contribute to the static friction force. 
The maximum static friction force is the sum of all tangential forces causing 
plastic flow of the individual pre-stressed asperities. So, the plastic 
deformation of asperities is the mechanism responsible for static friction  

• Johnson [2] investigated the micro-displacement between a hard steel 
ball and the flat end of a hard steel roller under the action of steady and 
oscillating tangential forces less than the static friction force. The quantitative 
results of the experiments are in good agreement with theoretical elastic 
theory proposed by Mindlin [3]. This theory has been developed for two elastic 
bodies which are loaded normally and tangentially against each other. 
According to Mindlin, if there is no slip between the contacting surfaces, the 
distribution of the shear stress goes asymptotically to infinite at the boundary 
of the contact circle. However, in practice this infinite shear stress has to be 
relieved in some manner, for instance by relative slipping of surfaces over an 
annulus which spreads radially inwards with increasing tangential load (Figure 
2.7).  

 

   A   A 

   Fn 

   Ft 

  A-A 

 stick area 

       slip area 

   Ft1    Ft2    Ftmax 

inception of 
macro-sliding 

Fig. 2.7. Evolution of the contact area (top view) according to 
Mindlin theory. 
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It is worth mentioning that the assumption of elastic bodies can be made for 
very hard, smooth bodies or for very elastic ones. 

• Two temperature-related mechanisms for static friction were proposed 
by Galligan and McCullough [6]. At low temperature the mechanism involves 
creep of asperities leading to motion, while for higher temperature the 
mechanism implies local sintering or welding of asperities and the motion 
occurs when these asperities break apart of each other. 

• The nature of static friction was investigated by Persson et al. [5] using 
molecular dynamics simulations. They focused on boundary lubrication at 
high pressures (1 GPa), which is typical for the contact between hard materials. 
The pinning of lubricant molecules on the solids is described by springs with 
bending elasticity. Stiff springs imply a very small static friction of the system, 
whereas soft springs determine a larger static friction force due to the elastic 
instabilities.   

 

 
2.4.2 Static friction mechanisms in rubber friction 
 

The literature survey revealed that static friction in rubber friction was 
less studied compared with the dynamic regime. Most of the papers describe 
experimental studies but none of them gives a complete explanation of the 
mechanism responsible for static friction. A review of these papers is presented 
in the following. 

Experiments were carried out by Barquins [10] on glass hemispherical 
samples in contact with soft elastomer samples. The evolution of the contact area 
was recorded by means of a camera mounted on an optical microscope. The 
superposition of the frames showed a contact area which comprises a central 
adhesive zone, surrounded by an annulus of slip. The mechanism seems to be 
similar to Mindlin’s theoretical approach, illustrated in Figure 2.7.   

The experiments of Adachi et al. [14] carried out on rubber balls in contact 
with glass plates revealed also the process of partial slip and its propagation with 
increasing tangential load as described theoretically by Mindlin. 

The static friction force was investigated by Roberts and Thomas [9] for 

v 

Fig. 2.8. Sliding friction mechanism, from [5]. 
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smooth rubber hemispheres in contact with glass plates. Their experiments 
carried out on (soft) rubber suggest that the magnitude of the static friction force 
is related to the elastic deformation of rubber prior to the appearance of the 
elastic instabilities like detachment waves or Schallamach waves. The 
Schallamach waves are small folds which are formed due to compression of the 
rubber and cause in fact the relative motion between bodies.   

Interfacial pinning (molecular groups chemically attached to the top solid) 
has been also found responsible for static friction in rubber friction by Persson et 
al. [5]. Because of thermally activated relaxation processes, the coefficient of 
static friction is larger than the coefficient of dynamic friction; furthermore the 
initial dwell time, which refers to the time of stationary contact, and the rate of 
starting influence the magnitude of the static friction. A thermally activated 
process will follow the Arrhenius relationship [36]:  

 
( )kT/expp Δωω −⋅= 0                           (2.4) 

 
where T is the temperature, k is Boltzmann’s constant, Δ is the activation energy, 
ω0 is characteristic frequency of the system and ωp is the frequency of maximum 
loss and is equal to the inverse of the relaxation time.  
 

As a result of the experimental evidence found in literature, the static 
friction mechanism taking place in the contact between a rubber-like material 
and a rigid counter sample will be modeled according to Mindlin’s theory, 
schematically described in Figure 2.7.  
  
 

2.5 Influence of various parameters on the static 
friction regime 
 
The coefficient of static friction is not a constant value, therefore the influence of 
several parameters on the static friction of metals and polymers will be discussed 
in the next sections. 
 
2.5.1 Metal-metal contact  
 
Experimental results showed that the coefficient of static friction depends 
significantly on the operational conditions. Due to the mechanisms involved in 
static friction of metallic bodies, for instance plastic deformation, creep, it is 
expected as the normal pressure, micro-displacement, dwell time, roughness and 
temperature to influence the coefficient of static friction. A literature survey will 
be presented. 
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2.5.1.1 Pressure 
 
Nolle & Richardson [7] pointed out that the two classical laws of friction 
(Amontons-Coulomb) can not entirely describe the friction properties of real 
metal surfaces since they do not take into account the surface contamination, 
material plastic deformation and time dependency.  
By considering these factors, the relation between the coefficient of static friction 
and the apparent contact pressure can be plotted as in Figure 2.9. The apparent 
contact pressure is defined as the ratio of the normal load to nominal contact 
area. 
 At low pressures, region I, the coefficient of static friction is constant. Both 
surfaces are covered by contaminant films and friction is mainly due to shearing 
of these films. Contaminant films are less reactive than clean metals therefore 
the friction forces are small in this region. 
 Increasing the contact pressure, the surface film is progressively broken. 
Some metal-metal contact occurs and friction force rises sharply (region II). 
 In region III substantial metal-metal contact takes place. The coefficient of 
static friction is again independent of pressure, but is much larger than in region 
I. 
 The large contact pressures from region IV determine extensive plastic 
deformation of surfaces. The coefficient of friction significantly decreases with 
increasing pressure and eventually becomes zero when the material fails in 
compression. The zero-coefficient of static friction at large pressures is debatable 
if the mechanism responsible for static friction in metal-metal contact is taken 
into account, see section 2.4.1.  
 

 
 Experimental results found in literature for the coefficients of static 
friction between dry steel surfaces indicate some qualitative agreement with 
theoretical trends showed in Figure 2.9.   
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Fig. 2.9. Qualitative description of the dependence of the 
coefficient of static friction on pressure, from [5]. 
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Chang et al. [4] found, based on a theoretical model, that at high pressures 
the coefficient of static friction between two rough metallic surfaces (steel on 
steel) decreases with increasing contact pressure. At high pressures most 
asperities are plastically deformed. Only a few asperities which have not reached 
their elastic limit can sustain a tangential force. As a result the friction force is 
small compared with the contact load, resulting in a very small coefficient of 
friction.  
Similar results were reported elsewhere by Broniec and Lankiewicz [8] between 
flat steel surfaces. 
 
2.5.1.2 Roughness 
 
In Chang’s static friction model for metallic rough surfaces [4] the effect of 
surface roughness was studied by varying the plasticity index. The plasticity 
index depends on material properties and surface topography. Smooth surfaces 
and hard materials have a low plasticity index and the contact is mostly elastic, 
while rough surfaces and soft materials have a high plasticity index and the 
contact is typically plastic. The results indicated that the coefficient of static 
friction decreases as the plasticity index increases. A high plasticity index means 
sharp asperities which are mostly plastically deformed, resulting in a small 
tangential force which can be sustained before macro-sliding. For very rough 
surfaces the effect of normal load on the coefficient of static friction diminishes, 
similar results were also reported elsewhere [8, 9]. 
 
2.5.1.3 Micro-displacement 

 
The experimental investigation performed by Johnson [2] on a steel ball 

in contact with the flat end of a hard steel roller showed that the static friction 
force rises linearly with preliminary displacement (Figure 2.10). 
Close to the point of sliding this dependence becomes non-linear. It can be 
observed that increasing the normal load results in an increase of preliminary 
displacement and static friction force. The results plotted in Figure 2.9 were 
obtained using a ball of 9.52⋅10-3 [m] diameter for a pressure range of 6.55⋅105 to 
1.28⋅106 [Pa]. 
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The preliminary displacement between steel/steel and steel/bronze surfaces was 
measured by Hagman and Olofsson [15]. The trend is similar to that showed in 
Figure 2.10. 
 
2.5.1.4 Dwell time 
 
Several analytical equations were formulated for the dependence of the static 
friction force on the stationary contact time. A review of these relations, which 
are expressed in the form of an exponential or power law, is presented in [16, 17] 
for both dry and lubricated contacts.  
For instance, the empirical relation proposed by Rabinovicz between the 
coefficient of static friction μs and the stationary contact time ts is given by: 
 

2
1

c
sds tc ⋅+= μμ                 (2.5) 

 
where μd is the dynamic coefficient of friction and c1 and c2 are constants. From 
equation (2.5) it can be seen that the coefficient of static friction is larger than 
the dynamic one if all constants have positive values and increases infinitely in 
time. The tests were carried on steel surfaces. According to Brockley et al. [17] 
the creep theory of metallic junctions might explain the experimental results. 
Equation (2.5) obtained from dry friction measurements does not agree with the 
experiments over a wide range of the stationary contact time in lubricated 
conditions. 
 Another empirical formula was proposed by Kato et al. [17]: 

Fig. 2.10. Static friction force vs. preliminary displacement at several normal loads:  
(      ) Fn = 91.2 [N], (x) Fn = 76.5 [N], (Δ) Fn = 61.8 [N], (+)Fn = 46.7 [N], from [2]. 
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( ) ( )4

300
c
sds tcexp ⋅−⋅−−= μμμμ               (2.6) 

 
where μ0 is the asymptotic value of μs when ts → ∞, μd is the value of μs when ts → 
0, nearly equal to the dynamic coefficient of friction and c3 , c4 are constants 
which depend on the properties of the lubricant applied and the surface 
topography. Equation (2.6) predicts a finite value of the coefficient of static 
friction even for a very long contact time (ts → ∞). Surfaces were made of cast 
iron. This equation shows a good agreement with the experimental results for a 
wide range of the dwell time. Both equations are shown schematically in Figure 
2.11.  

 
 
As an example, the values of the constants in the equations (2.5) and (2.6) 
obtained on cast iron surfaces lubricated with naphthene mineral oil are given in 
Table 2.1.   
 
    Table 2.1. The values of the parameters of equations (2.5) and (2.6), from [17].  

lubricant: naphtane 

mineral oil 
μd μ0 c1 c2 c3 c4 

Rabinowicz eq. (2.5) 0.156 - 0.079 0.284 - - 

Kato eq. (2.6) 0.156 0.450 - - 0.286 0.671 
 
 
2.5.1.5 Temperature 
 
The temperature effect on the coefficient of static friction was experimentally 
investigated by Galligan and McCullough [6] on copper and brass. They found 

μs [-] 

ts [s] 

Rabinowicz 
Kato 

 

 

   

Fig. 2.11. The variation of coefficient of static 
friction with stationary contact time. 
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that, at relatively low temperatures, the coefficient of static friction decreases 
with increasing temperature and, after passing a minimum, it starts to increase 
with temperature, see Figure 2.12. 

At low temperature the mechanism involves creep of asperities. In copper 
on copper contact, this low temperature regime was between 20°C and 60°C. 
Increasing the temperature in region (I), the amount of creep increases, thus a 
smaller tangential force is required to initiate macro-sliding. Conclusively, the 
coefficient of static friction decreases with increasing temperature in the low-
temperature regime. 
 After passing through a minimum which depends on the materials in 
contact, the coefficient of static friction increases for higher temperatures (70 to 
120°C in copper on copper contact). In region (II) static friction is related to the 
mechanism of welding of asperities and breaking of these junctions. When the 
temperature increases, the junctions become stronger and a higher tangential 
force is required to cause macro-sliding. 
 

 
 
2.5.2 Rubber-rigid contact  
 
Static friction of polymers was not widely studied, however the data found in 
literature shows that it is affected by various parameters such as pressure, micro-
displacement and roughness. These dependencies will be presented and 
discussed further. 
 
2.5.2.1 Pressure  
 
Experiments carried out on glass lenses in contact with a rubber flat surface by 

(I) creep of 
asperities 

(II) welding of 
asperities 

μs [-] 

T(°C) 

Fig. 2.12. Qualitative description of the dependence of the coefficient of 
static friction on temperature, adapted from [6]. 
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Barquins and Roberts [11] showed that the coefficient of static friction decreases 
if the normal load increases.  

A relationship between the maximum static friction force Fs and normal 
load N was obtained by Tarr and Rhee [12] from their experiments on a filled 
phenolic resin/cast iron material couple in a flat on flat configuration. 
Accordingly, Fs = μs⋅Nβ where the exponent β varies from 1.03 to 1.41 for organic 
materials (phenolic resin reinforced with asbestos and filled with minerals) and 
from 1.1 to 1.37 for semi-metallic materials (phenolic resin reinforced with steel 
fiber and filled with iron, graphite and minerals). 
 
2.5.2.2 Limiting displacement 
 
The micro-displacement prior gross sliding is an important parameter of the 
static friction regime as it was already mentioned. The dependence of this micro-
displacement on the coefficient of static friction (or maximum static friction 
force) is presented in the following.  

The results of the experiments carried out by Bogdanovich and Baidak 
[13] on steel cylinders against epoxy polymer plates are illustrated in Figure 2.13. 
At low pressures, the limiting displacement δl increases linearly with the 
coefficient of static friction μs, this relationship becomes non-linear at higher 
pressures. 

Similar experimental curves between the coefficient of static friction and 
the preliminary displacement with those showed in Figure 2.10 were found by 
Adachi et al. [14] for a rubber hemisphere loaded against  a glass plate. 

 

2.5.2.3 Roughness 
 
The roughness of surfaces in contact influences the static friction regime 

 

Fig.2.13. Limiting displacement vs. coefficient of static friction at various 
pressures: 1) 1.55 [MPa], 2) 4.5 [MPa], 3) 6.5 [MPa], 4) 10 [MPa], from [13]. 
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regarding the limiting displacement and the coefficient of static friction. 
Bogdanovich and Baidak [13] investigated the effect of surface roughness 

on the limiting displacement between a polymer plate and a steel cylinder. They 
found that the limiting displacement decreases with increasing average 
roughness Ra of the steel counterbody, then passes through a minimum and 
finally increases for higher Ra as schematically shown in Figure 2.13. A similar 
dependence was also found between the coefficient of static friction and the 
surface roughness (Ra) of the counterbody. They explained this behavior by 
using the adhesion and the deformation components of friction. 
 Adhesion effects decrease in zone I (Figure 2.13) when Ra increases due to 
reduction of the number and size of the asperities in contact, leading to a drop in 
friction level. In region II the ploughing component of friction increases with Ra, 
as a result, the coefficient of static friction as well as the limiting displacement 
rise in this domain. 

 
 
2.6 Summary and conclusions 
 
In this chapter, the basic principles and mechanisms regarding static friction are 
introduced.  
The parameters of the static friction regime are defined in terms of static friction 
force, coefficient of static friction, preliminary displacement and limiting 
displacement.  
The mechanisms responsible for dynamic friction as well as for static friction in 
metal-metal contact and rubber-rigid contact are described.  
Plastic deformation of asperities is the main mechanism responsible for static 
friction between metals. The experimental results from literature confirmed this.  
When contact between bodies is regarded as elastic, the theoretical model 
proposed by Mindlin can be used to model the preliminary stage of friction. 

  δl [μm]

Ra [μm] 

I II 

Fig. 2.14. Effect of surface roughness on the limiting displacement, 
adapted from [13]. 
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Two temperature-related static friction mechanisms have been found in contact 
between metallic surfaces. They consist in creep of asperities at low 
temperatures and in welding of asperities at higher temperatures. 
Less attention has been paid to the mechanisms of static friction between rubber 
and other materials. As a result of the  experimental evidence found in literature, 
Mindlin’s approach of a contact area comprising a stick and slip zone which 
evolves until gross sliding occurs has been chosen to describe the mechanism of 
static friction in rubber-metal contacts.  
Experimental results from literature showed that the static friction regime in 
metal friction as well as in rubber friction depends on several parameters such as 
pressure, dwell time, temperature and roughness. A literature survey has been 
presented in this respect.  

A theoretical model for predicting static friction of rubber-metal systems is not 
available in literature. The relationships found are based on experimental 
results. 
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Chapter 3  
 
 

Contact of surfaces in a rubber pad 
forming process 

 
Introduction 

 
In this chapter, the tribological system is reviewed and the 
relevant properties of the contact between rubber pad and metal 
sheet are discussed with respect to the material and surface 
properties. The viscoelastic properties of the rubber pad are 
described as well as the measurement techniques. Since adhesion 
can play an essential role in friction of rubber-like materials, the 
surface free energy of materials in contact has been investigated. 
Surface roughness plays a significant role in contact and friction 
between the rubber pad and the metal sheet. Therefore, surface 
roughness parameters are introduced together with 
measurement techniques. Depending on the relation between the 
real contact area and the apparent contact area, different 
approaches can be used to model the contact between the rubber 
pad and the metal sheet. These approaches are briefly discussed.  

 
 

3.1 Overview of the tribological system 
 
A first step in finding the solution to a certain problem in tribology is to establish 
the tribological system. The tribological system assigned to describe the rubber 
pad forming process is schematically shown in Figure 3.1 and consists of: rubber 
tool (1), workpiece (2), die (3), and environment (4). 
Two different tool-workpiece contacts can be identified in a rubber pad forming 
process: 
• rubber pad/metal sheet contact and  
• metal sheet/die contact. 
The first type of contact is the subject of this study and is discussed in the 
following.  
 In rubber pad/metal sheet contact the nominal pressure, defined as the 
ratio of applied load to nominal contact area, is constant in region (I), see Figure 
3.1,  in the order of 50-100 [MPa] as estimated from finite element simulations, 
while in region (II) it is usually two or three times higher with a maximum 
located near the die radius. The relative velocity between rubber pad and metal 
sheet depends on the approaching velocity which ranges from 50 to 500 [mm/s] 
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according to [40]. The rubber pad forming process is performed at room 
temperature and is normally carried out without lubrication of the parts. For 
severe operating contacts, lubrication is applied. In these contacts, region I and 
region II, static friction is caused be the shearing of the boundary layers present 
on the rubber and metal sheet. 
 

 
 Our study will focus on the relation between rubber pad (1) and metal 
sheet (2) with respect to contact, friction and adhesion; these three aspects are 
influenced by the mechanical and micro-geometrical properties of the two 
elements, by the operational parameters like contact pressure, velocity and 
temperature as well as by the surface energy and environment in terms of 
humidity.  
 
 
3.2 Mechanical properties of the rubber tool and 
metal sheet 
 
3.2.1 Rubber tool 
 
The rubber tool or so-called flexible tool can be made of natural rubber, 
neoprene, urethane or other elastomers [27]. Urethane is usually used in 
practice due to its special properties like good wear resistance, oil and solvent 
inertness, thermal stability and very high load-bearing capacity [27].  
 The polyurethane chosen in our research is most frequently used in rubber 
pad forming processes. The properties of three types of polyurethane samples of 

Fig. 3.1. Rubber pad forming process - tribological system: 
1. rubber tool, 2. workpiece, 3. die, and 4. environment. 
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different hardness (80, 90 and 95 Shore A) are listed in Appendix A, Table A.1  
 It is important to mention that the polyurethane is a viscoelastic material, 
which means that it shows the characteristics of both an elastic solid and a 
viscoelastic fluid. As a result, some other tests have been carried out in order to 
determine the specific viscoelastic properties.  
These tests can be divided into two main categories:  

• dynamic tests (or frequency/temperature domain measurements) and  
• transient tests (time domain measurements).  

 
Dynamic tests 
From this category, the Dynamic Mechanical Analysis (DMA) was the technique 
used to measure the dynamic properties of the polyurethane samples. The tests 
were carried out on a Myrenne ATM3 torsion pendulum at a frequency of 1 Hz 
and 0.1 % strain. The samples were first cooled to -100°C and then subsequently 
heated at a rate of 1°C/min up to 220 ºC. 
 The basic properties obtained from a DMA experiment include the storage 
modulus (G'), the  loss modulus (G") and the loss tangent (tan δ) as a function of 
temperature (T), as shown schematically in Figure 3.2.  
 

 
The storage modulus G' is defined as the stress in phase with strain divided by 
the strain in a sinusoidal shear deformation mode [28] and it is a measure of the 
energy stored and recovered per cycle. The loss modulus G" is defined as the 
stress 90° out of phase with the strain divided by the strain [28] and is a measure 
of the energy dissipated or lost as heat per cycle of cyclic deformation. The loss 

Fig. 3.2. Storage modulus, loss modulus and loss tangent as a function 
of temperature (adapted from [34]). 
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tangent tan δ = G"/G' is a dimensionless parameter which provides information 
about the ratio of the energy lost to the energy stored in cyclic deformation. 
 
 

 
The complex shear modulus G* is defined in terms of storage and loss modulus 
as follows and the vectorial representation is shown in Figure 3.3: 

 
 GiGG* ′′+′=                  (3.1) 
 
The results obtained from DMA experiments performed on three polyurethane 
samples of different Shore hardness (80, 90 and 95 Shore A) in terms of storage 
modulus, loss modulus and loss tangent vs. temperature are plotted in Figure 
3.4. One can observe that for all types of polyurethane the loss tangent is rather 
low in the temperature range 20 to 70 °C, which is the working temperature in 
rubber pad forming processes. It can be said that the polyurethane behaves 
almost elastically in this temperature regime. 

strain 

G* 

δ 

Fig. 3.3. Vectorial representation of 
the complex shear modulus. 

G" 

    G' 
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The temperature at which a material changes from a rigid, glassy solid to a more 
flexible, elastomeric solid is called the glass transition temperature (Tg). There 
are many variations in definition of the glass-transition temperature; here it was 
considered as the temperature of the peak of the loss modulus. The glass 
transition temperatures of the polyurethane samples are given in Table 3.1. 

Fig. 3.4. Storage modulus, loss modulus and loss tangent vs. temperature. 
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Table 3.1 Glass transition temperatures and reference temperatures of the 
polyurethane samples. 

Material Tg [°C] Tr [°C] 

polyurethane 80 Shore A -65.4  -15.4 
polyurethane 90 Shore A -45.3 4.7 
polyurethane 95  Shore A -45.5  4.5 

 
The measured data can be converted into frequency data at a certain 

temperature using the Williams-Landel-Ferry (WLF) equation [40]. 
Accordingly, the values of any viscoelastic property obtained at temperature T 
and frequency ω (ω = 2πf, rad/s) can be related to a reference temperature (Tr = 
Tg + 50°C) by a frequency shift aTω. The values of the glass transition 
temperature and reference temperature for each material are given in Table 3.1. 
The WLF equation is given by: 
 

 
r

r
T TT.

)TT(.alog
−+
−−

=
5101

868
10                                      (3.2) 

 
The storage modulus as a function of the frequency can be expressed as: 
 
 ( ) ( )roTo T,a'GT,'G ωω =                                 (3.3) 
 
In order to reduce the experimental data to a certain temperature, for instance 
room temperature T0 = 20 °C, the shift factor for the new temperature has to be 
calculated: 
 

 
r

r
T TT.

)TT(.alog
−+
−−

=
0

0
10 5101

868
0

               (3.4) 

 
Then, the shift in decades Q is given by: 
 
 

01010 TT alogalogQ −=                           (3.5) 

 
Thus, each data point recorded at (ω, T) with log10 ω as abscissa has to be shifted 
by an amount Q to correspond to the new temperature T0. The storage modulus, 
loss modulus and loss tangent as a function of frequency are given in Figure 3.5 
for the polyurethane 95 shore hardness A. These data are presented for three 
temperatures (reference temperature (Tr), room temperature (T0), and Tf = Tg + 
100 ° C) within the temperature range where the WLF law is applicable, Tg < T < 
Tg + 100 ° C. 
It can be observed that the loss tangent decreases in the low frequency regime, 
this means that the energy stored in the material is larger than the dissipated 
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energy. Then, the curve passes through a minimum after which it starts 
increasing at higher frequencies and finally is reaching a steady state value. 
 

Fig. 3.5. Storage modulus, loss modulus and loss tangent vs. frequency  
(polyurethane 95 Shore A). 
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Transient tests 
The time-dependent viscoelastic properties can be obtained from creep and 
relaxation experiments.  
In a creep test a constant stress is applied and the development of the strain in 
time is recorded. The response of a viscoelastic material to a constant applied 
load is shown in Figure 3.6. Part 1 corresponds to the instantaneous elastic 
deformation, part 2 to the delayed deformation or creep, followed by an elastic 
recovery 3 when the load is removed and a residual deformation 4. 
 

 
 
In this case, the creep compliance φ(t) is usually used to describe the material 
viscoelastic properties and is defined as the recorded strain ε(t) divided by the 
applied constant stress σ0: 
 

( ) ( )
0σ

εϕ tt =                             (3.6) 

 
In a stress relaxation test a constant displacement is applied and the stress is 
recorded in time, see Figure 3.7. Similarly, the stress relaxation modulus ψ(t) is 
defined as the recorded stress σ(t) divided by the applied constant strain ε0: 
 

( ) ( )
0ε

σψ tt =                  (3.7) 

 
 Stress relaxation tests have been carried out on polyurethane samples by 
means of a tensile tester. The equipment was a universal testing machine ZWICK 
1445 with 10 kN capacity. The specimen is deformed a certain amount and the 
decrease in stress is recorded over a certain period of time. A force cell of 1000 N 
has been used for measuring the load and the applied displacement was 
measured by using a Linear Variable Differential Transformer (LVDT) which is 
an electromechanical transducer.  
 The stress relaxation modulus as a function of time is plotted in Figure 3.8 

1 

2
 3 

4 

    strain 

     time time 

stress 

Fig. 3.6. Creep. Fig. 3.7. Stress relaxation. 
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for all the three types of polyurethane at a constant applied strain of 5 %. 
Looking at the experimental results, it can be observed that the relaxation 
modulus decreases significantly in the first 20 seconds and then decreases 
gradually approaching an almost constant value. For the stiffer polyurethane (95 
Shore A) the initial drop of the relaxation modulus is higher than for the other 
two softer polyurethanes (80 and 90 Shore A).  

Mechanical models composed of springs and dashpots are used to model 
the response of a viscoelastic material under creep or relaxation conditions. 
These models will be discussed in detail in Chapter 4. 

 
3.2.2 Workpiece 
 
In rubber pad forming processes the workpiece is usually a metal sheet. In our 
application this metal sheet is made of aluminium alloy (Alclad 2024). The 
aluminium alloy 2024 is a reinforced copper-magnesium alloy [Cu 4.5%, Mg 
1.5%, Mn 0.6% plus a number of other elements] which was introduced to 
replace 2017-T4 (Duralumin) in aircraft structures.  
The following information regarding the properties of aluminium alloy 2024 are 
presented from [37]. Due to its high strength and excellent fatigue resistance, 
aluminium alloy 2024 is used for structures and parts where good strength-to-
weight ratio is desired. It is machined to a high finish. It is readily formed in the 
annealed condition and may be subsequently heat treated. Since corrosion 
resistance is relatively low, aluminium alloy 2024 is commonly used with an 
anodized finish or in clad form (“Alclad”) with a thin surface layer of high purity 
aluminum. It is used in various applications such as aircraft structural 
components, aircraft fittings, hardware, truck wheels and other parts for the 
transportation industry [37]. The mechanical properties provided by the supplier 
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    Fig. 3.8. Stress relaxation modulus as a function of time. 
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(Stork-Fokker) are summarized in Appendix A, Table A.2. The provided 
aluminum sheet is 0.7 [mm] thick. 
 
 

3.3 Surface free energy and work of adhesion 
 
Adhesion does play an important role in friction between bodies. When two 
bodies are brought very close to each other, attractive forces are developed 
between the atoms or molecules of the opposing surfaces. These attractive forces 
can create strong bonds, as for instance covalent bonds or metallic bonds, or 
weaker bonds as those created by the van der Waals forces or hydrogen bonds. 
At certain interatomic distances, the surfaces get in contact creating a region 
able to sustain and transmit stresses.  This phenomenon is called adhesion. 

Adhesion can be quantified by the work of adhesion W12 [9], which 
represents the energy that must be applied to separate a unit area of the 
interface between the materials 1 and 2 and is given by the Dupré’ s equation: 

 
 122112 γγγ −+=W                 (3.8) 

 
where γ1  and γ 2  are the surface free energies of the two materials in contact and 
γ12 denotes the interfacial energy. 
The surface free energy γ [29] can be defined in relation to a gas (medium) as the 
work needed to create reversibly and isothermally an elemental area dA of new 
surface in equilibrium with the medium and has units [J/m2].  
The energy of the interface created between the two bodies represents the 
interfacial energy. This interfacial energy is not a measurable parameter, 
therefore another equation has been proposed for calculating the work of 
adhesion. 
 According to Girifalco, Good and Fowkes [39] and also to Skvarla [30] the 
work of adhesion can also be expressed as the geometric mean of the surface free 
energy of the two contacting surfaces: 
 

 2112 2 γγ ⋅⋅=W                 (3.9) 

 
This relation was obtained by considering the work necessary to separate two 
solids which attract each other through van der Waals forces to an infinite 
distance. 
 The surface free energy can be measured in several ways. Three 
approaches will be briefly discussed: 1) the equation of state approach [31]; 2) 
the surface tension components approach [31], and 3) the contact angle 
hysteresis approach [32]. All these approaches rely on contact angle 
measurements. 
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3.3.1 Equation of state approach 
 
The first approach consists in Young’s equation in conjunction with a semi-
empirical equation that states that the interfacial free energy is determined by 
the liquid surface tension and the solid surface free energy [31]. Young’s 
equation relates the surface tension to the contact angle in a solid-liquid 
interaction (see Figure 3.9, with γSV = γS and γLV = γL): 
 
 θγγγ cosLVSLSV ⋅=−               (3.10) 

 
where γSV is the surface tension at solid-vapor interface, γSL is the surface tension 
at solid-liquid interface and γLV is the surface tension at liquid-vapor interface. 
Usually, the adsorption at the solid-vapor or liquid-vapor interfaces can be 
neglected, in that case γSV = γS and γLV = γL. Dupré’s equation gives the 
thermodynamic work of adhesion for a solid contacting a liquid in terms of 
surface tension: 
 
 SLLSSLW γγγ −+=                          (3.11) 

 
Combining equations (3.10) and (3.11) results in Young-Dupré equation: 
 
 )cos(W LSL θγ +⋅= 1                         (3.12) 

 
which completely determines the reversible work of adhesion, based on a known 
value of the surface tension of the liquid γL and a measured contact angle θ. 
In order to obtain the surface free energy of a solid γS, another relation between 
the terms of Young’s equation is necessary. Li and Neumann [38] came with so-
called “equation of state”: 
 
 

2
2 )(c

SLSLSL
SLe γγγγγγγ −⋅⋅⋅−+=                       (3.13) 

 
where c = -0.0001247 is a constant. This semi-empirical equation holds for 
various liquids on different surfaces [31].  
 
3.3.2 Surface tension components approach 
 
According to the surface tension components approach described in [31] and 
[33], the surface free energy consists of two components, the Lifshitz-van der 
Waals (LW) apolar component and electron-donor/electron-acceptor (or Lewis 
acid-base) (AB) component: 
 
 ABLW γγγ +=                (3.14) 
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The Lifshitz-van der Waals component of the work of adhesion can be calculated 
using the geometric mean approach as follows: 
 

 LW
S

LW
L

LW
SLW γγ ⋅⋅= 2              (3.15) 

 
and the Lewis  acid-base term is determined by the following combining rule: 
 

 ⎥⎦
⎤

⎢⎣
⎡ ⋅+⋅⋅= −++−

LSLS
AB

SLW γγγγ2             (3.16) 

 
where −

Sγ  is the electron-donor (Lewis base) and +
Sγ  is the electron-acceptor 

(Lewis acid) parameter. 
The total work of adhesion can be expressed as [33]: 
 

 ⎥⎦
⎤

⎢⎣
⎡ ⋅+⋅+⋅⋅2=+1⋅= −++−

LSLS
LW
L

LW
SLW γγγγγγθγ )cos(                    (3.17) 

 
By performing contact angle measurements for three liquids and having known 
their surface tension and components ( −

Lγ , +
Lγ , LW

Lγ ), the system formed by 
equation (3.17) written for each liquid can be solved with respect to the solid 
surface free energy components ( −

Sγ , +
Sγ , LW

Sγ ). 
It is worth mentioning that the choice of liquid triads is very important; as it was 
shown by Radelczuk et al. [33], not any liquid triad can be used to calculate the 
solid surface free energy components. Table 3.2 presents a summary of the 
liquids used for contact angle measurement and “good triplets” [33]. 
 

Table 3.2 Liquids that can be used for contact angle measurements [33]. 

Water (W) Liquid triads 

Glycerol (G) 

Formamide (F) 
Bipolar liquids 

Ethylene glycol (EG) 

Diiodomethane (D) 
Apolar liquids 

1-Bromonaphthalene (B) 

D-W-F 

D-W-G 

D-W-EG 

B-W-F 

B-W-G 

B-W-EG 

 
 
3.3.3 Contact angle hysteresis approach 
 
The third approach is based on three measurable parameters: advancing and 
receding angles and the liquid surface tension. The advancing and receding 
angles can be measured using the syringe method [33]. A schematic 
representation of this method is shown in Figure 3.9. 
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The equation proposed by Chibowski [32] to calculate the surface free energy of 
a solid from the advancing and the receding contact angles is given below: 
 

 22

2

11
1

)cos()cos(
)cos(

)cos(cos
ar

a
arLS θθ

θ
θθγγ

+−+

+
⋅−=                              (3.18) 

 
where θa is the advancing angle and θr is the receding angle. 
 
A comparison between the last two approaches has been done by Radelczuk et 
al. [33] for different solid surfaces; the results from the surface tension 
components theory were in good agreement with those from the contact angle 
hysteresis method. 
  
3.3.4 Surface free energy and work of adhesion of the 
rubber pad and metal sheet 
 
In this study, the surface free energies of rubber and metal samples were 
obtained by using the contact angle hysteresis approach. The results of the 
contact angle measurements for cleaned and as received materials are 
summarized in Table 3.3. 

 

 

 

 

 

θa 
θr 

γL 

γS 

γSL 

γS 

γL 

γSL 
solid 

liquid 

vapor 

Fig. 3.9. Schematic representation of advancing and 
receding contact angle measurements [33]. 
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Table 3.3 Advancing and receding contact angle and surface free energy. 

Material 

(clean surfaces) 

Advancing 

contact 

angle, θa 

Receding 

contact 

angle, θr 

γS 

(mJ/m2) 

Fibroflex 80 Shore A (clean surface) 92 56 27 
Fibroflex 90 Shore A (clean surface) 106 52 16 
Fibroflex 95 Shore A (clean surface) 87 34 28 
Al alloy (2024) (clean surface) 63 38 47 
Steel (clean surface) 52 32 55 
Al alloy (2024) (as received) 79 29 34 
Steel(as received) 75 34 37 

 
The liquid used was water and the surfaces were cleaned with ethanol and 

dried with air. Looking at the advancing contact angles in Table 3.3 it is observed 
that the rubber samples have hydrophobic surfaces (θ > 90º) while the metal 
surfaces are hydrophilic (θ < 90º). Two advancing contact angle measurements 
are presented in Figure 3.10. The surface free energy of solids was calculated 
with equation (3.18). As expected, the rubber samples have a relatively low 
surface energy compared with metals. The surface free energy is smaller for 
contaminated surfaces (as received) as indicated by the results obtained for 
aluminum and steel surfaces. In industrial applications (rubber pad forming 
process) the surfaces are not cleaned. 

 
 

 
 
Having determined the surface free energies of the two materials in 

contact (rubber pad-aluminum sheet, aluminum sheet-steel die) the work of 

θa 

Fig. 3.10. Advancing contact angle measurements: steel surface – left hand 
side; polyurethane 80 Shore A – right hand side. 

θa 
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adhesion for rubber-metal and metal-metal contacts was calculated with 
equation (3.9).The results are listed in Table 3.4. The results show that the 
resulting work of adhesion is smaller when one of the materials in contact has a 
low surface energy (polyurethane). 

 
Table 3.4 Work of adhesion. 

Material combination 
Work of adhesion 

(mJ/m2) 

Fibroflex 80 Shore A – aluminum alloy 71 
Fibroflex 90 Shore A – aluminum alloy 55 
Fibroflex 95 Shore A– aluminum alloy 73 
Fibroflex 95 Shore A– steel 78 
Steel – aluminum alloy 102 

 
 

 
3.4 Surface roughness characterization 
 
A rough surface is composed of peaks (or asperities) and valleys of different 
amplitudes and spacings as schematically shown in Figure 3.11. A comprehensive 
analysis of surface roughness is given in [18], [19].  

 

 
Two parameters commonly used to describe random rough surfaces 

regarding their amplitude are the average roughness (Ra) and standard deviation 
(σ) of the surface heights or the root mean square (RMS). In order to define 
these parameters, a mean line is established so that the area delimited by the 

     mean line 

L 

peaks or asperities 

valleys 

   z 

   dz 

p(z) 

  x 

Fig. 3.11. Surface roughness description (adapted from [18]). 
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roughness profile and the mean line, above and below the mean line, is the same, 
as schematically shown in Figure 3.11.  
The average roughness is given by equation: 
 

 ∫⋅=
L

a dxz
L

R
0

1
                                          (3.19) 

 
where z(x) is the height of the surface above the mean line and L is the sampling 
length.  
The root-mean-square RMS or standard deviation σ of the height of the surface 
from the mean line is defined by: 
 

 ∫⋅=
L

dxz
L

0

22 1σ                         (3.20) 

 
The probability height distribution p(z) denotes the probability that the height of 
a certain point on the surface to be situated between z and (z + dz). This 
probability distribution is often similar to the normal or Gaussian probability 
function (see Figure 3.11) and is expressed as:  
 
 ( ) ( )22211 22 σπσ ⋅−⋅⋅⋅= −− /zexp)z(p /            (3.21) 
 
with σ  the RMS roughness value. 
 

All above-presented parameters are related to the variations in height of 
the surface. One parameter which describes the surface roughness from lateral 
or spatial point of view is the density of the peaks ηp, which is the number of 
peaks per unit length. 
 
3.4.1 Roughness measurement techniques 
 
Several measurement techniques are used to obtain surface height data. They 
can be classified according to the physical principle involved into following: 
mechanical stylus, optical methods, scanning probe microscopy (SPM), fluid 
methods, electrical methods, and electron microscopy methods [19]. The first 
two techniques are typically used in engineering and manufacturing applications 
and are of interest for this study, while the other are used for nano-scale to 
atomic scale roughnesses.  

In the mechanical stylus method a stylus is moved with a constant velocity 
across the surface. The vertical motion due to the surface height deviations is 
amplified and recorded. This is a contact-type instrument which has the 
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disadvantage that can damage the surface if a sharp stylus is moved along a soft 
surface. 

 
A non-contact optical method was used for measuring the roughness 

properties of the surfaces involved in our applications (rubber-like material and 
metals) by means of an interference microscope (Figure 3.12). The principle is 
based on the interference of the light reflected by the surface and a reference 
light beam. The measured surface heights, relative to a certain regression plane 
(flat, cylindrical or spherical), will result in a discrete presentation of the surface 
roughness. Subsequently, the roughness data have to be preprocessed and 
analyzed as comprehensively described in [21]. 
 
3.4.2 Measurements 
 
Figures 3.13 and 3.14 show the surface topography of a metal sheet and of a 
rubber plate measured with the Micromap interference microscope. The surface 
roughness has been measured over an area of 441.1 × 340 [μm2] with an amount 
of 304 × 228 pixels.  
The measured surface roughness parameters in terms of average roughness and 
root-mean-square of the aluminium-alloy sheet (ALCLAD 2024) and 
polyurethane plates (80, 90 and 95 Shore A) are given in Table 3.5. When 
comparing for instance the Ra values one can say that the surface of 
polyurethane 95 Shore A is smooth while the surfaces of the polyurethane 80 
Shore A and aluminum are rough. 
 

Fig. 3.12. Interference microscope (from [21]). 
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Table 3.5 Surface roughness parameters. 

Material Ra (μm) RMS (μm) 

Aluminum alloy 0.371 0.481 
Polyurethane 95 Shore A 0.013 0.017 
Polyurethane 90 Shore A 0.072 0.112 
Polyurethane 80 Shore A 0.978 1.441 

Fig. 3.13. Surface height data – aluminum sheet. 

Fig. 3.14. Surface height data – polyurethane sample 
(polyurethane 95 Shore A). 
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Different from the surface of the polyurethane samples, the aluminum sheet has 
a certain pattern, this means an anisotropic surface.  
 

In summary, the properties of the rubber pad and metal sheet have been 
discussed as well as the methods used to determine them. DMA and relaxation 
tests have been carried out on the rubber samples in order to evaluate the 
viscoelastic properties. The surface free energies of the metal and polyurethane 
samples have been obtained based on contact angle measurements. The 
roughness parameters of surfaces in contact have been also obtained. 
 
 
3.5 Contact between surfaces  
 
An essential step in studying friction between bodies consists in modeling the 
contact between them. Different approaches can be used depending on the 
properties of the materials in contact. They will be discussed in the following 
sections.  
 
3.5.1 Contact area   
 
When two bodies touch each other a contact area is created. This geometrical 
area is called apparent or nominal contact area. In reality, the contact will occur 
between their summits on many small areas. The sum of all these areas gives the 
real contact area. In Figure 3.15 the upper surface has been considered rough 
and the lower one is taken as smooth. 
 Depending on the relation between the nominal contact area and the real 
contact area we can divide the contact between surfaces into three main 
categories: 
I. multi-summit contact in which the real contact area is a very small fraction of 
the apparent contact area. 
II. overall contact in which the asperities are squeezed giving rise to a giant 
“asperity”. In this case the real contact area is almost equal to the apparent 
contact area. 
III. multi-asperity contact is an intermediate contact situation. Here, the contact 
is not determined by the local maxima and also not by the global shape of the 
surface. 
  
All these contact situations are further discussed and the approaches used in 
modeling are presented. 
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3.5.2 Multi-summit contact (type I contact) 
 
The Greenwood-Williamson [20] approach is suitable for type I contact where 
the real contact area is a small fraction of the nominal contact area.  
  
 
 
 
 
 
 
 
 
 
 
 
 

Surface 2 

  β 

Surface 1 

  s 

 z 

d 

  Mean plane surface heights 

      Mean plane summit heights 

σs 

sa 

Fig. 3.16. Modeling surface roughness and contact of rough surfaces 
(statistical approach). 

Fn 

Fn 

a. 

  c. 

   R 

  Fn 

b. 

Fig. 3.15. Types of contact: a. multi-summit contact; b. single-like asperity contact; 
c. multi-asperity contact. 
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Accordingly, the contact between two rough surfaces is replaced by the contact 
between a flat surface and a rough one as schematically shown in Figure 3.16. 
The rough surface is taken as composed of summits, which are spherically 
shaped. They have the same radius and their heights follow a statistical 
distribution; therefore it is sometimes called a statistical contact model. Some 
other assumptions of the model are: the summits are located far away from each 
other so that there is no interaction between them.  Beside this, there is no bulk 
deformation. This model allows calculation of the real contact area and total 
normal load based on the single-asperity model equations. The single-asperity 
model is used to describe the contact between a flat and a sphere. 
 
3.5.2.1 Summits  
 

Summits can be defined as points with a local surface height higher than 
their neighbors. They can be determined using various definitions such as five-
point summits or nine-point summits, see [21]. The nine-point definition has 
been chosen here to determine the summits.  The statistical parameters of the 
summits are: the average summit radius β (spherical shaped summits), the 
summit density η, and the standard deviation of the summit heights σs, see 
Figure 3.16.  
The histogram of all local summit heights s gives the summit height distribution. 
Then, normalizing the histogram, the summit height density Φ(s) is obtained. 
The standard deviation of the summit heights σs can be calculated with the 
formula: 
 

 ( )∑ −=
maxn

n
a

max
s ss

n
22 1σ             (3.22) 

 
where n is the number of summits and sa is the average summit height. The 
average summit height is also the distance between the mean plane of the 
summit heights and the mean plane of the surface heights (Figure 3.16). 
The summit radius β is the inverse of the arithmetic mean of the curvature k in 
two perpendicular directions; the curvature k is calculated using the three point 
definition of a summit curvature [21]. 
The summit density η  is given by the number of summits per unit area A:  
 

 
A

nmax=η               (3.23) 

 
Besides, two other parameters, which are used to describe a non-Gaussian 

summit height distribution (or surface height distribution), are the skewness Sk 
which is defined by 
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 ( ) ( )∫
∞

∞−

⋅−= dssssS a
s

k φ
σ

3
3

1
                       (3.24) 

 
and the kurtosis Ks given by 
 

 ( ) ( )∫
∞

∞−

⋅−= dssssK a
s

s φ
σ

4
4

1
            (3.25) 

 
The skewness Sk provides information regarding the symmetry of the height 
distribution. The kurtosis Ks shows how the summit heights are distributed 
around the average summit height sa. For instance, a Gaussian distribution has 
Sk = 0 and Ks = 3. 
 

Table 3.6 Summit roughness parameters. 

Material β [μm] σs [μm] η ⋅1010 [m-2] 

Aluminum alloy 3.1 0.528 2.27 
Polyurethane 95 Shore A 343.4 0.016 1.41 
Polyurethane 90 Shore A 14.9 0.19 0.67 
Polyurethane 80 Shore A 0.6 1.874 3.96 

 
 The summit parameters of the polyurethane samples and metal sheet are 
presented in Table 3.6. They were obtained by processing the surface roughness 
data obtained with the interference microscope in Matlab, according to the 
procedure explained in [21]. A surface with a large average summit radius and a 
small σs is considered smoot, while one with a small average summit radius and 
a high σs is taken as rough.   
 

 

 

 
 
 
 
 
 
 
 
 
 

 
     Fig. 3.18. Summit locations 

(polyurethane). 
Fig.3.17. Distribution of the summits as a 

function of the summit heights (polyurethane). 
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The distribution of the summits as a function of the summit heights is plotted in 
Figure 3.17 for the polyurethane 80 Shore A and in Figure 3.19 for the aluminum 
sheet. It is clear that the summits have different radii and that the higher 
summits have smaller radii. The locations of all summits are shown in Figure 
3.18 and 3.20. It can be observed that the polyurethane has an isotropic surface, 
the summits which are usually located on the surface ridges are randomly 
distributed, while for the aluminum surface they are oriented to a certain 
direction. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
3.5.3 Overall contact (type II contact) 

 
At relatively high loads the contact between elastic and stiff surfaces can 

be regarded as a huge single-asperity contact due to flattening of the micro-
asperities as indicated in Figure 3.15 (b). In this case it can be assumed that the 
nominal contact area is equal to the real contact area, thus, the contact can be 
modeled for instance by the Hertz theory [35]. The single-asperity contact will be 
in detail presented in the next chapter. 
 
3.5.4 Multi-asperity contact (type III contact) 
 
Type III contact is not similar to a type I contact, because the contacting 
asperities are larger than the local maxima (summits). Besides, they will not 
deform independently. Moreover, bulk deformation can not be neglected. The 
contacting asperities for this case will be called “equivalent asperities”, see 
Figure 3.21. 
 

 
Fig. 3.19. Distribution of the summits as a 
function of the summit heights (Al alloy). 

Fig. 3.20. Summit locations 
(Al alloy). 
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If we consider the surface height density from Figure 3.22, it can be 

assumed that at large separations there are only a few asperities in contact which 
do not interact with each other, therefore they can be accurately described by a 
type I contact; at smaller separations (decreasing d) more asperities come into 
contact interacting and merging with their neighbors in the so-called equivalent 
asperity. This results in a type II contact at small separations. 
 

 
 
An equivalent asperity is shown schematically in Figure 3.21. In calculations, the 
equivalent asperities are modeled by elliptical paraboloids. It is assumed that the 
normal contact area and the volume of the contacting part of the elliptical 
paraboloid and of the original microcontact are the same for reasons of load and 
energy equivalence. The radii in x and y directions which define the elliptical 
paraboloid are given in Appendix A1. 

summits 

equivalent 
asperity 

Fig. 3.21. Micro-geometry: equivalent asperity and 
summits. 
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Fig. 3.22. Influence of surface height density on using 
summits or equivalent asperities, for d see Fig. 3.16. 
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 Besides replacing the summits by equivalent asperities, their interaction 
and the bulk deformation will be also considered. The multi-asperity contact 
case including the interaction of neighboring asperities will be comprehensively 
explained in Chapter 5. 
 
 

3.6 Contact and friction between rubber pad and 
metal sheet 
 
Compared to other polymers the polyurethane used as a flexible tool (90-95 
Shore A) is stiff. Thus, the multi-asperity contact approach appears to be suitable 
for the rubber-metal contact at relatively large loads, while at low loads the 
multi-summit approach can be appropriate.  
 A rough estimation of the real contact area as a function of normal load 
could give an indication of the behavior of the coefficient of friction for different 
materials in contact. 
When rough stiff surfaces are involved, so a type I contact, the real contact area 
is proportional to the normal load (Ar ~ Fn) which will result in a constant 
coefficient of friction for a constant shear stress τ: 
 

μ = Ff/Fn = τ⋅Ar/Fn ~ constant                                                                     (3.26) 
  
At the other extreme, so a type II contact, when one of the materials in contact is 
soft compared to the other one, the contact is similar to that between a large 
(soft) asperity and a rigid one. Thus according to Hertz theory the contact area is 
proportional to the normal load to the power 2/3 which determines a coefficient 
of friction given by the following equation assuming a constant shear stress τ: 
 

μ = Ff/Fn = τ ⋅ Ar/Fn ~ Fn
2/3/Fn ~ Fn

-1/3                                                      (3.27) 
 

Fig. 3.23. Relation between the real contact area and friction: curve 1 –stiff 
rough surface, type I contact; curve 2 – soft rough surface, type II contact. 
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These relations are plotted in Figure 3.23. The polyurethane-metal contact is 
most probably located somewhere in between these limits. So, the coefficient of 
friction is expected to decrease with increasing normal load. A comprehensive 
analysis will be presented in the following chapters. 
 
 

3.7 Summary and conclusions 
 
The properties of the contacting bodies in terms of mechanical properties, 
surface energy and roughness are described as well as the measurement 
techniques.  
Depending on the ratio of real contact area to nominal contact area, different 
approaches can be used to model the contact of real bodies. When the contact 
area is a small fraction of the nominal contact area a multi-summit model (for 
instance Greenwood-Williamson) is appropriate. At the other extreme, when the 
real contact area almost equals the nominal contact area, a single-like asperity 
model is suitable. The intermediate case can be modeled using a multi-asperity 
contact which accounts for asperity interaction and bulk deformation. 
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Single-asperity static friction model 
 

Introduction 
 
 The normal contact between a viscoelastic sphere and a rigid flat 

is modeled using a modified Hertz theory in which the viscoelastic 
behavior is incorporated through a mechanical model. When a 
tangential load is subsequently applied, a mechanism similar to 
that described by the Mindlin theory is assumed to take place in 
the contact area. At low loads adhesion starts to play an 
important role. Its effect has been modeled according to Johnson-
Kendall-Roberts (JKR) theory, in which a factor has been 
included which accounts for the work of adhesion of viscoelastic 
materials. Friction is attributed to the shear of the interfacial 
layer which separates the bodies in contact.  A static friction 
model is developed based on the above-mentioned contact 
models. Furthermore, a parametric study is presented regarding 
the influence of several parameters on the static friction force and 
limiting displacement.  

 In summary, the normal contact of elastic bodies is discussed then 
this case is extended to viscoelastic bodies including also adhesion 
effect. Afterwards, the case of tangential loading of elastic and 
viscoelastic bodies including adhesion is presented. Finally, the 
shear in the interfacial layer is modeled as well as the static 
friction in the contact of a viscoelastic asperity and a rigid flat.  

 
 

4.1 Normal loading of elastic bodies 
 
The solution of the normal contact between two elastic spheres (see Figure 4.1) 
with respect to the contact radius a, normal approach (or penetration) δn and 
pressure distribution p(r) is given by Hertz [35]:  
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where E* is the reduced elastic modulus and is given by 
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and E2 are the elastic moduli of the two bodies, ν1 and ν2 are the Poisson’s ratio 
of the two bodies, R = R1·R2/(R1+R2) is the reduced or equivalent radius, r is a 
radius inside of the contact area, and Fn is the normal load. 
 

 
 
4.1.1 Adhesion effect on normal contact of elastic bodies 
 
Adhesion does play an important role in certain contact situations such as 
smooth surfaces in contact subjected to very low loads, very clean surfaces in 
contact, cases where one or both of materials in contact has a very low elasticity 
modulus, and also in the case of contact of bodies on a very small scale.  

The Lennard-Jones potential, depicted in Figure 4.2, describes the energy 
of interaction between two atoms as a function of the distance between their 
centers and is given by the equation: 
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where ε is the energy constant, z is the interatomic separation and ra is the 
radius of the atoms. Equation (4.4) comprises an attractive term as well as a 

Fig. 4.1. Contact parameters of two spheres 
subjected to a normal load. 
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repulsive term. At short range (small z) the potential energy is large and positive; 
at longer range the potential energy is small and negative. 
 

 
The force between atoms, schematically shown in Figure 4.2, is derived from the 
potential equation (4.4) and is given by the negative of the first derivative of the 
function V(z). This force-separation curve shows that when the atoms are close, 
the interatomic force is repulsive while at higher distances the interatomic force 
is attractive. At a certain value of the interatomic separation z0 called 
equilibrium distance the energy has a minimum value Vmin which corresponds to 
zero value of the force. 
 A first contact theory which takes into account the effect of intermolecular 
forces was developed by Bradley [41]. He studied the effect of surface forces 
having a Lennard-Jones potential on the contact of rigid spheres. The force 
necessary to separate two rigid spheres or the pull-off force was found to be 
equal to RW ⋅⋅⋅ 122 π . This expression can be obtained by integrating the contact 
pressures caused by the tensional forces between the surfaces over the contact 
area, where W12 is Dupré’s work of adhesion and R is the equivalent radius.  
 Experiments carried out on rubber spheres at very low loads by Johnson, 
Kendall and Roberts [43] revealed a contact area larger than that predicted by 
the Hertz theory. Therefore, a contact model was developed which takes into 
account the surface forces, which is called the Johnson, Kendall and Roberts 
theory or simply JKR theory.  
Accordingly, these surface forces act inside the contact area, which is not 
constrained to be Hertzian.  The contact between an elastic sphere and a flat is 
depicted in Figure 4.3 in the presence and in the absence of surface forces. It can 
be observed that the contact radius denoted a1 increases due to the attractive 

Fig. 4.2. Lennard-Jones potential; force-separation relationship, 
from [42]. 
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forces between surfaces and the pressure distribution p1(r) is tensile in the 
annulus surrounding the central compressive area of radius ac, showing a 
singularity at the edge of the contact.  
 

 
In the JKR theory the contact radius, normal displacement and pressure 
distribution can be calculated with 
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Fig. 4.3. Contact between an elastic sphere and a flat in the presence of 
surface forces (full line) – JKR contact radius a1, compressive radius ac, 

pressure distribution p1(r); in the absence of surface forces (dotted line) – 
Hertzian contact radius a, pressure distribution p(r), adapted from [43]. 
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where Fn1 is the apparent Hertzian load which would determine a contact radius 
a1. The pressure distribution p1(r) comprises a tensile zone close to the edge of 
the contact area and a central compressive part whose radius is given by 
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The pull-off force found by Johnson, Kendall and Roberts [43] is equal to 

RW ⋅⋅⋅ 122/3 π , so independent on the material properties like elasticity modulus 
and in contradiction with the force found by Bradley [41.] 
 Derjaguin, Muller and Toporov [44] presented a different theory, called 
the DMT theory, using a thermodynamic approach. In the DMT model the 
surface forces act outside the contact area, while the geometry is limited to be 
Hertzian. They found that the pull-off force is equal to RW ⋅⋅⋅ 122 π   (the same 
result as in Bradley’s theory) and there is no stress singularity at the edge of 
contact. 

At a first sight contradictory, these theories have proved to apply to 
different limits of contact situations, indicated by a non-dimensional parameter 
introduced by Tabor [46]. This parameter can be interpreted as the ratio of the 
elastic deformation to the range of action of the surface forces and is given by: 
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where z0 is the equilibrium spacing in the Lennard-Jones potential (see Figure 
4.2) and E* is the combined elastic modulus. Consequently, Bradley’s analysis 
and DMT theory provide a good approximation for small μT, in which case the 
elastic deformation is negligible. For highly adhesive systems, corresponding to 
large values of μT, the JKR theory is appropriate.  

The intermediate regime has been studied by Maugis [45] using a Dugdale 
approximation for the surface forces.  

In the Dugdale approximation, schematically shown in Figure 4.4, the 
stress is constant and equal to σ0 until a separation ho is reached and then it falls 
to zero. This maximum stress matches the Lennard-Jones potential, from which 
the separation h0 = 0.97·z0 is obtained by keeping the energy to separate the two 
bodies in both cases the same. 
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In the theory of Maugis, the contact is maintained over a central region in 

which the pressure is Hertzian and the constant adhesive stresses extend to a 
radius c (see Figure 4.5). Thus, the net or total pressure pt(r) acting on the 
contact area is the sum of the Hertz pressure p(r), and the adhesive tension pa(r) 
acting on the circle of radius c. The total force is the sum of the applied load Fn 
and of the adhesion force Fa.  

 

 
  Based on the Maugis-Dugdale intermediate model an adhesion map has 
been constructed by Johnson and Greenwood [47] in order to determine the 

Fig. 4.5.  Maugis - Dugdale distribution of surface traction: 
p - Hertz pressure acting on a circle of radius a; pa - the 
adhesive tension acting on circle of radius c, from [47]. 
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appropriate model for a certain contact situation and for a certain material 
couple. 
 

 
The adhesion map is plotted in Figure 4.6 having on the x-coordinate the 
elasticity parameter given by: 
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and on the y-coordinate the ratio of the net force to the adhesive pull-off force, 
which can be written as: 
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A rough analysis done in [47] indicates that contacts involving low elasticity 
materials such as elastomers correspond to a Tabor parameter μT > 100, so they 
are located in the JKR regime of the adhesion map. In the case of materials with 
a high elasticity modulus the value of the Tabor parameter is typically μT < 1 
which corresponds to the Bradley region. 
 
 

Fig. 4.6. Adhesion map, adapted from [47]. 
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4.1.2 Application: polyurethane-metal contact with 
adhesion 
 
The adhesion map presented in Figure 4.6 enables to estimate which theory of 
adhesion is appropriate to be used for a certain material combination, geometry 
and load. Here, the case of a polyurethane asperity of radius R in contact with 
aluminum flat is considered. The values of the parameters involved in the 
calculations regarding the elasticity modulus and work of adhesion were 
presented elsewhere (see Table A.1 and Table 3.4). For the polyurethane 80 
Shore A - aluminum contact the work of adhesion is W12 = 0.071 [J/m2] and for 
polyurethane 95 Shore A - aluminum W12 = 0.073 [J/m2]. 
 The results of the calculations are summarized in Table 4.1. The radii of 
the asperities used in calculations have been chosen comparable to those 
obtained from the roughness measurements on the rubber samples (see Table 
3.6). According to the values obtained for the elasticity parameter λ and for the 
ratio of net force to pull-off force denoted by nF , these contacts are located in the 
JKR region of the adhesion map (see Figure 4.6). As expected, for stiffer 
materials in contact (polyurethane 95 Shore A/aluminum alloy), the elasticity 
parameter λ decreases moving towards the Maugis-Dugdale regime. However, in 
all cases presented below the JKR regime is appropriate. 
 
 

Table 4.1 The elasticity parameter and adhesive pull-off force. 

Polyurethane 80 Shore A - 

aluminum alloy 

Polyurethane 95 Shore A -

aluminum alloy 
Fn = 10-5 [N] 

elasticity 

parameter, λ [-] 

net force/pull-off 

force, nF  [-] 

elasticity 

parameter, λ 

net force/pull-off 

force, nF  [-] 

R = 5·10-5 178.8 0.89 78.5 0.88 
R = 5·10-6 82.9 8.9 36.4 8.8 
R = 5·10-7 38.5 89.4 16.9 87.7 

 
 
Figure 4.7 shows the influence of adhesion on the contact radius of a 
polyurethane (E = 133 MPa) sphere with a metal flat (aluminum alloy). It can be 
observed that the contact radius given by the JKR theory is significantly higher 
than the Hertzian radius at very low loads. At higher normal loads the effect of 
adhesion becomes less important and the JKR radius converges to the Hertzian 
radius. For a larger radius of the polyurethane asperity ( R = 5·10-4 [m]) the 
contact radii increase with both models (Hertz and JKR) and moreover the 
increase in the contact radius with adhesion (JKR) is larger than in the Hertzian 
case.  
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The influence of elasticity modulus on the contact radius in both cases with and 
without adhesion is illustrated in Figure 4.8. As expected, the contact radii, i.e. 
Hertz theory and JKR theory, are larger for materials with a low elasticity 
modulus, this effect being the same for the case with adhesion and without 
adhesion. 

 
 

4.2 Normal loading of viscoelastic-rigid asperity 
couple 
 
4.2.1 Modeling the behavior of viscoelastic materials 
 
As it was already mentioned in Chapter 3.2, viscoelastic materials incorporate 
both elastic and viscous characteristics. This material behavior can be predicted 
by using purely phenomenological models, so-called mechanical models 
consisting of springs and dashpots connected in series and/or in parallel. 

Fig. 4.7. Comparison of the contact radii without adhesion (Hertz theory) and with 
adhesion (JKR theory) for two radii of asperities, R = 5·10-5 and R = 5·10-4 [m]. 
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 The simplest mechanical models comprise one spring in series or in 
parallel with one dashpot as shown in Figure 4.9 a-b. The Maxwell model (Figure 
4.9 a) describes properly the relaxation behavior while the Voight model (Figure 
4.9 b) is appropriate for creep. 
 

 
The Standard Linear Solid (SLS) model gives a relatively good description of 
both stress relaxation and creep behavior. Usually, a combination of several 
Kelvin or Maxwell elements is necessary to describe accurately the behavior of 
real viscoelastic materials. 
 In order to keep the contact model analytically tractable a Standard Linear 
Solid behavior will be used in this thesis. However, there is no restriction to 
extent it to more complicated material models. For the SLS model the 
generalized Hook’s equation can be written as: 
 
 ( ) σσηεεη ⋅++⋅=⋅⋅+⋅⋅ 21211 ggggg &&            (4.13) 

 
where g1, 2 is the elasticity of the springs, η is the viscosity of the dashpot, ε is the 
strain, and σ is the stress. 

 The creep compliance function φ(t) can be obtained from equation (4.13) 
by making the stress constant and equal to σ0 and solving the differential 
equation with respect to the strain ε, resulting in: 
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where T2 = η/g2 is the retardation time. 

 g 

 η 

  σ, ε 

  g  η 

    σ, ε 
 g1 

 g2  η 

   σ, ε 

a. b. c. 

Fig. 4.9. Mechanical models: a. Maxwell model; b. Kelvin (or Voight) 
model; c. Standard Linear Solid (or Zener) model. 
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Similarly, the stress relaxation function can be obtained by taking the stain 
constant and equal to ε0 in equation (4.13) and is given by: 
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where T2 = η/(g1 + g2) is the relaxation time. 
 
For 0→t  an instantaneous modulus E0 can be defined which is equal to 

( ) ( ) 1
100 g== −ϕψ  and for ∞→t  the relaxed modulus E∞ is given by 
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 The creep compliance and stress relaxation function are input parameters 
of the contact model as it will be shown in the next section, therefore they have 
to be quantified.  
The stress relaxation function of the SLS model (equation 4.15) has been fitted 
with the experimental curve obtained from tensile measurements (as described 
in section 3.2.1) in order to determine the parameters of the mechanical model 
in terms of elasticity of the springs (g1, 2) and dashpot viscosity (η).  
 

 
Figure 4.10 shows the fitted and the experimental curves for polyurethane 95 
Shore A for two periods of time, 30 [s] and 180 [s] respectively. It can be 
observed that they fit relatively well; only at the start of the relaxation they do 
not mach very well. A mechanical model with more parameters (i.e. springs and 
dashpots) would be able to describe the behavior more closely. The values of the 
SLS parameters are summarized in Table 4.2. Depending on the time of the 
experiment, an increase of the value for the elasticity of the springs is observed 
for shorter periods of time, while the value of the dashpot viscosity increases for 
longer periods of time.  
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Fig. 4.10. Measured (polyurethane 95 Shore A) and curve fitted (Standard 
Linear Solid) stress relaxation modulus vs. time: left – 30 [s], right – 180 [s]. 
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Table 4.2 Standard Linear Solid parameters. 

SLS parameters 

polyurethane 95 Shore A 
g1 [N/m2] g2 [N/m2] η [N⋅s/m2] 

t = 30 [s] 6.43⋅107 2.34⋅108 1.49⋅109 

t = 180 [s] 5.77⋅107 2.13⋅108 7.95⋅109 

 
 
4.2.2 Normal loading of viscoelastic-rigid asperity couple 
 
The Hertz theory was extended by Lee and Radok [7] to linear viscoelastic bodies 
using the correspondence principle. According to this principle the solution to a 
viscoelastic problem can be obtained from the elastic solution.  
The case of normal contact between a linear viscoelastic asperity and a rigid one 
is presented by Johnson in [6]. A Standard Linear Solid model was chosen to 
describe the viscoelastic behavior of rubber-like material in terms of both creep 
and relaxation (see Figure 4.9. c). 
The elastic sphere was assumed to be incompressible (ν = 0.5) with a shear 
modulus G. The viscoelastic solution is presented for two cases: when the 
variation of penetration is prescribed (displacement-controlled case) and when 
the load variation is given (load-controlled case). 
 In the displacement controlled case a certain variation of normal 
displacement δn = δn(t) is imposed, then the contact radius, pressure distribution 
and normal load are given by [6]:  
 

 ( ) ( )[ ] 21 /
n tRta δ⋅=                                    (4.16) 

                        

 ( ) ( )[ ]∫ ′−′
′

⋅′−⋅
⋅

=
t

/
tdrta

td
dtt

R
)t,r(p

0

21224 ψ
π

          (4.17) 

                                                

 ( ) ( )∫
0

3 ′′
′

⋅′−⋅
⋅3
8

=
t

n tdta
td
dtt

R
tF ψ)(                       (4.18)  

                                                             
 In the load-controlled case, the variation of the normal load is given Fn = 
Fn(t) and the following relations result for the contact area and pressure 
distribution [6]: 
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In order to keep the calculations analytically tractable, in the following sections 
the normal load (load-controlled case) or normal displacement (displacement-
controlled case) will be taken as Heaviside step functions. The simplified 
equations for such a case, written for a viscoelastic-rigid asperity couple are 
presented in Appendix B, equations B.1 to B.8. 
Results obtained with the equations showed above will be presented in section 
4.2.3.2. First, the effect of adhesion on the contact parameters for a viscoelastic-
rigid couple will be discussed. 
 
4.2.3 Adhesion effect on the normal contact of a 
viscoelastic-rigid couple 
 
4.2.3.1 Viscoelastic contact with adhesion – theoretical background 
 
The adhesive contact between viscoelastic bodies has been studied by Maugis & 
Barquins [49] using the fracture mechanics theory, due to the similarities 
between the crack propagation in a body and the receding or the advancing 
contact area between two bodies, as shown schematically in Figure 4.11.  
 

 
For elastic bodies in contact subjected to either compressive or tensile forces, the 
equilibrium is given by the Griffith’s criterion: 

Fig. 4.11. The similarity between the receding contact area of two spheres 
subjected to tensile loads and the crack propagation in a body. 
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 12WGe =                            (4.21) 

 
which states that the energy release rate Ge, which is defined as the rate of 
change in potential energy with crack area for a linear elastic material [52], is 
equal to the thermodynamic work of adhesion W12 (or Dupre’s work of 

adhesion). The equilibrium is stable if 
A

Ge

∂
∂

 is positive and unstable if 
A

Ge

∂
∂

 is 

negative, where A is the contact area. 
When Ge ≠ W12, the contact area has to change in order to decrease the total 
energy of the system. The contact area increases if Ge < W12 and decreases if Ge > 
W12, which means that the crack advances. The term (Ge - W12) denotes the crack 
extension force per unit length of the crack [53].  
In the case of viscoelastic materials it is assumed that the viscoelastic losses are 
located at the crack tip and they are dependent on the deformation rate and 
temperature. Consequently, the energy release rate can be written as:   

 
 )](1[12 vafWG Te ⋅+⋅=                                   (4.22)

  
where f is a characteristic of the material, independent of the geometry and of 
the loading system, aT is the WLF shift factor (see equation 3.2) and v is the 
crack velocity. The right side of equation (4.22) is called the apparent work of 
adhesion or the fracture work of adhesion and is the product of the 
thermodynamic work of adhesion and a function of velocity and temperature as 
proposed elsewhere [53].  

 The mechanics of adhesion of viscoelastic bodies has also been studied by 
Greenwood and Johnson [51] using the fracture mechanics theory. It is shown in 
[51] and also in detail in [53] that the results of the JKR theory can easily be 
obtained using the fracture mechanics approach. Accordingly, the pressure 
distribution can be written as: 
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where KI is the stress intensity factor (I denotes Mode I of loading, i.e. opening 
[52]) which characterizes the force of the singularity of the stresses at the crack 
tip and can be related to the energy release rate by the relation:  
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This analysis done for the elastic materials has been extended to the viscoelastic 
materials [51]. The critical stress intensity factor, at which a crack will extend in 
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an elastic material, defined in [51] as 
π2
I

c
KN =  has been analyzed for the 

loading and unloading of viscoelastic bodies. It was assumed that the bodies 
separate similarly to the shape of the Griffith’s crack depicted in Figure 4.12 a.  

 
Due to the viscoelastic dissipation within the material, the loading case 
(increasing contact area) has to be treated separately from the unloading case 
(decreasing contact area). It has been found that the same equation applies in 
the viscoelastic case for the critical stress intensity factor as in the elastic case, in 
which the instantaneous modulus E0 is used instead of the elastic modulus. For 
the loading case the work of adhesion is scaled by a viscoelastic factor *

*
0

∞

=
E
E

kv  
and is given by: 
 

 
v

v k
WW 12=               (4.25) 

 
while in the unloading case the effective work of adhesion is vkW ⋅12 . The 
viscoelastic factor is independent of the separation rate, which seems to be in 
discrepancy with some experimental results presented in [49]. However, when a 
step load or displacement is applied to a material couple, it is expected that the 
rate of separation to have a minor effect. 
The loading rate has been considered in a more complex analysis [51] developed 
for a Barenblatt crack (see Figure 4.12 b). 

 An adhesion theory has been developed by Hui, Baney and Kramer [50] 
for the contact of viscoelastic spheres based on the Maugis-Dugdale [45] 
adhesion model. In their theory the mechanics of the viscoelastic contact, the so 
called outer problem, has been coupled with the local micromechanics of 
adhesion or the inner problem as shown in Figure 4.13.  

 

Fig. 4.12. The shape and the stress distribution at the tip of a) a 
conventional Griffith crack and b) according to Barenblatt, from [51]. 

a) b) 
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Similarly to the Maugis-Dugdale approach, the surface forces act in the cohesive 
zone outside of the contact area. Using the Dugdale potential (Figure 4.4) the 
stress is constant and equal to σ0 over a certain crack length L. Adhesion 
between bodies is accounted by the relation between the stress intensity factor KI 
and the crack propagation velocity a& , namely: 
 

 ),,,( hWafK I 012= σ&                        (4.26) 

 
where σ0, h0 are parameters characterizing the bonding process. Even for 
idealized models of intermolecular interaction, such as the Dugdale-Barenblatt 
model, the function f has a very complicated form, for details see [54]. 
 
4.2.3.2 Viscoelastic-rigid contact with adhesion – chosen approach 
 
It has been shown in the previous section that the effect of adhesion on contact 
of viscoelastic materials can lead to very complicated equations. Moreover the 
cohesive-zone model [54] involves parameters such as the length of the cohesive 
zone and some other material constants which are not measurable quantities. 
Thus, a simplified approach is followed which assumes that the cohesive zone is 
very small compared to the contact radius, so its effects can be neglected. This is 
true for highly elastic materials. As it was also mentioned in [54], the JKR theory 
is a limiting case which applies when the cohesive zone is small compared with 
some other relevant lengths (i.e. contact radius). 
Taking into account all the considerations discussed above, a modified JKR 
theory is proposed. First it is considered that in the loading case the work of 
adhesion is reduced by a viscoelastic factor kv as suggested by Greenwood and 

     L 

σ0 

a&

Fn 

     2·a 

Fig. 4.13. Contact of spheres; coupling of a) the outer problem – 
viscoelastic contact mechanics, with b) the inner problem – local 

adhesive bonding, adapted from [50]. 

a) b) 
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Johnson in [51]. The modified equations written for a viscoelastic-rigid couple 
are presented in Appendix B, equations (B.9) to (B.12).  
As showed in Figure 4.3, the JKR distribution of pressure p1(r) comprises a 
central compressive part and an annular tensile part in which the surfaces tend 
to peel apart. In this approach, in order to be able to apply the Mindlin approach 
and to calculate the static friction force, it is considered that only the 
compressive part has a significant contribution in the contact. It is noticed that 
the shape of the compressive part almost resembles a Hertzian pressure 
distribution. Thus, the compressive pressure distribution has been fitted with a 
Hertzian distribution denoted pe(r) by keeping the load equivalence. The 
equivalent Herzian pressure distribution is written as 
 

 ( ) ( ) ( ) 224, rta
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e −⋅
⋅⋅
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            (4.27) 

 
where acv is the radius of the contact area under compression, see equation 
(B.12) in Appendix B, and Re is the reduced equivalent radius deduced from the 
load equivalence condition as 
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with a1v and Fn1 given by equations (B.9) and (B.10) in Appendix B. 
 
The contact of a viscoelastic asperity with a rigid flat has been chosen to 
illustrate the theory proposed above. The input parameters used in the 
calculations are summarized in Table 4.3. 
 

Table 4.3 Values of the input parameters. 

Parameter Symbol Value Unit 

Work of adhesion Wv 0.34 mJ/m2 

Elasticity of the spring (SLS model) g1 6.43⋅107 [N/m2] 

Elasticity of the spring (SLS model) g2 2.34⋅108 [N/m2] 

Viscosity of the dashpot (SLS model) η 1.49⋅109 [N⋅s/m2] 

Radius of the sphere R 5⋅10-5 [m] 

 
The distribution of pressure in the contact area is shown in Figure 4.14 for three 
contact situations at a certain time instant (t = 50 s) and for an applied normal 
load Fn of 10-5 [N]: first, when adhesion is not taken into account, the 
distribution of pressure pv(r) is calculated with equation (B.4) from Appendix B; 
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secondly, when surface forces are considered, the pressure distribution p1v(r), 
unbounded at the edge of the contact area, is given by equation (B.11) from 
Appendix B – modified JKR theory; and finally, the equivalent finite pressure 
distribution pe(r) which acts in the compressive area given by equation (4.27).  
 

 
A specific characteristic of the viscoelastic contact is the variation of the contact 
radius in time which is shown in Figure 4.15 for the load-controlled case. 
It can be observed that the radius of the contact area increases in time due to 
creep. The contact radius has been calculated in the case without adhesion with 
equation (4.18) in which the normal load was taken as a Heaviside step function. 
When surface forces are taken into account, the radius of the contact area a1v is 
calculated with equation (B.9) from Appendix B, in which the work of adhesion 
is taken as Wv (see Table 4.3). This viscoelastic work of adhesion is much larger 
than the work of adhesion calculated for elastic materials. The radius of the 
compressive area denoted by acv is calculated with equation (B.12), Appendix B.  
The contact radius calculated with the modified JKR theory is much larger than 
the contact radius without adhesion for this applied normal load. It has been 
shown in Figure 4.7 that this difference becomes smaller at higher normal loads. 
Another remark is that the compressive radius is about 80% of the contact 
radius in the case of adhesion.  

Fig. 4.14. Distribution of pressure: pv(r) – no adhesion, p1v (r) - with adhesion 
(modified JKR theory) and pe(r) – equivalent pressure with adhesion. 
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 In summary, this approach, suitable for viscoelastic materials, predicts a 
contact radius larger than that obtained in the elastic case with JKR theory (for 
comparison see Figure 4.7); a Hertzian type pressure distribution is obtained by 
taking the contact area equal to that under compression and by keeping the load 
equivalence. It will be shown later in this chapter that this Hertzian pressure 
distribution allows us to model static friction for viscoelastic-rigid contacts using 
a similar theory to that developed by Mindlin for elastic materials. 
 
 

4.3 Tangential loading of elastic bodies 
 
Now, an elastic sphere is considered which is normally and tangentially loaded 
against a rigid by the compressive load Fn and tangential load Ft  (see Figure 
4.16). 
If the tangential force Ft is less than the force needed to cause macrosliding, it is 
firstly assumed that the bodies will deform in shear without any slip at the 
interface. The contact area and pressure distribution are caused by the normal 
load (Hertz theory) and are not influenced by the tangential load. Thus, the 
shear stress distribution which produces a uniform tangential displacement of a 
circular contact area is given in [18] by: 
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where 2
0 2 aFt ⋅⋅= πτ . This relation is schematically shown in Figure 4.17, 

curve A. It can be observed that it has a singularity at the r = a, which means that 
the shear stress increases theoretically to infinite at the edge of the contact. 

Fig. 4.15. Radius of the contact area vs. time without adhesion 
(Hertz), with adhesion (modified JKR), and radius of the 

compressive area. 
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These high shear stresses can not be sustained since they would require a very 
high (or even infinite) coefficient of friction. Therefore, it has been assumed that 
these high tangential stresses are relieved by microslip at the edge of the contact. 
The solution to the partial slip of the elastic bodies normally and tangentially 
loaded has been presented by Cattaneo (1938) and independently by Mindlin [3] 
and it will be in detail discussed in the next paragraph. 
 

   
The tangential displacement δt of a point located far away of the contact in the 
elastic body bodies is expressed as [6]: 
 

 ⎟⎟
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Ft

t
ν

δ                (4.30) 

 
where G is the shear modulus of the elastic material. Equation (4.30) indicates a 
linear relationship between the tangential displacement and the applied 
tangential load. 

Fn 

Ft 

R 

  2a 

stick area 
slip area 

  c 

Fig. 4.16. Division of the contact area (top view) into a stick 
region and slip one for a sphere in contact with a rigid flat, 

normally and tangentially loaded. 
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 According to the Mindlin approach, the contact area comprises a central 
region in which the surfaces stick together surrounded by an annular region 
where microslip ensures the relief of the infinite tangential stresses (curve A in 
Figure 4.17). 
In the slip region, the Amonton’s first law of friction (Chapter 2.1) is assumed to 
be valid at a local scale. This means that this law determines the relationship 
between the local shear stress and the normal pressure: 
 
 pdslip ⋅= μτ                (4.31) 

 
while in the stick region the shear stress has to be smaller than the value 
necessary for slip: 
 
 psstick ⋅≤ μτ                         (4.32) 

 
where μd is the coefficient of dynamic friction and μs is the coefficient of static 
friction. The assumptions of Mindlin’s theory are that the global coefficient of 
friction is the same as the local one and the coefficient of dynamic friction from 
equation (4.31) equals the coefficient of static friction from equation (4.32), 
namely μd = μs = μ. 
The shear stress distribution acting on a circular contact area of radius a, which 
comprises a central stick area of radius c, is given in [18] by: 
 

Fig. 4.17. Shear stress distributions in contact between an elastic sphere and 
rigid plane for Ft < Fsmax; curve A – no slip, curve B – partial slip. 
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and is depicted in Figure 4.17, curve B. The shear stress in the slip area is written 
for the moment when the two surfaces in contact are on the point of sliding, 
thus, the coefficient of static friction μs is used. By integrating the shear stresses 
over the contact area, the magnitude of the tangential load Ft is obtained. From 
this, the radius c of the stick circle is deduced: 
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The magnitude of the slip at a radius r inside of the slip region and the relative 
tangential displacement of the two bodies were found by Johnson [6] to be: 
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4.4 Tangential loading of a viscoelastic-rigid 
couple 
 
In order to keep the proposed model analytically tractable, as explained before it 
is assumed that the applied load and displacement are Heaviside step functions. 
Similarly to the normal contact, the solution to the tangential loaded contact of 
viscoelastic bodies is obtained from the elastic solution by substituting the elastic 
constant with the appropriate viscoelastic operators. It is also assumed that the 
contact area between a viscoelastic sphere and a rigid flat does not change its 
circularity during the tangential loading. Both particular cases, load-controlled 
and displacement-controlled are presented below. 

Load-controlled case 
A viscoelastic sphere is considered which is pressed against a rigid flat by a 
normal load that varies in time according to: 
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 ( ) ( )tHFtF nn ⋅=                         (4.37) 
 
where t is the time and H(t) is the Heaviside step function or the unit step 
function defined as: 
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For t > 0 the contact radius av can be written as: 
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and the pressure distribution is expressed as: 
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Then, the shear stress distribution is obtained as: 
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with the radius of the stick circle equal to: 
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Similarly, by substituting the viscoelastic parameters into equations (4.35) and 
(4.36) the expressions for the slip at the interface sv and the tangential 
displacement δv are obtained: 
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Displacement-controlled case 
In a displacement-controlled case, the normal displacement or indentation is 
taken as 
 
 ( ) ( )tHt nn ⋅= δδ              (4.45) 

 
In this case the contact radius is constant and equal to: 
 

 [ ] 2/1
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while the pressure distribution and normal load changes in time according to: 
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Equations (4.41) and (4.42) expressing the shear stress distribution and the 
radius of the stick zone apply also to the displacement-controlled case together 
with the equations (4.46), (4.47) and (4.48).  
The slip at the interface and the tangential displacement of points far away from 
the contact are obtained from equations (4.43) and (4.44) by replacing the creep 
compliance function φ(t) with the relaxation function ψ(t). 
 
4.4.1 Application: viscoelastic-rigid contact 
 
The theory presented in the previous section is applied now to a 
polyurethane/rigid material couple subjected to a constant normal load (load-
controlled case) and subsequently to an increasing tangential load, up to the 
point of sliding. Some input parameters are given in Table 4.4 and the 
parameters of the mechanical model are given in Table 4.3. A constant 
coefficient of static friction is assumed and the tangential load is taken as an 
increasing function of time Ft(t) = t·10-7. 
Having set these input parameters, the shear stress distribution inside the 
contact area can be determined. 
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Table 4.4 Values of the input parameters. 

Parameter Symbol Value Unit 

Coefficient of  friction μ 0.2 [-] 

Radius of the sphere R 5⋅10-5 [m] 

Normal load Fn 10-5 [N] 

 
The shear stress distribution is plotted in Figure 4.18 at a certain time instant t = 
1 [s], arbitrarily chosen (the thick line) and on the point of sliding (thin line), 
when the applied tangential load equals the product of coefficient of static 
friction and normal load.  
 

 
 

Fig. 4.18. Shear stress distribution in the partially 
slip regime and in the fully slip regime. 
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Fig. 4.19. Shear stress distribution at two time instants, 
t = 1 [s] and t = 15 [s]. 
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The variation of the shear stress distribution in time is illustrated in Figure 4.19 
for two time instants, 1 [s] and 15 [s]; the shear stress distribution increases in 
time. 

The evolution of the contact area, comprising a decreasing curve denoted 
Astick in which surfaces stick together and an increasing annular one Aslip, in 
which surfaces slip, is ilustrated in Figure 4.20. 

 

 
 On the point of macrosliding ( t = 20 s) the slip area equals the total 

contact area. Similarly, the tangential forces corresponding to the two regions 
mentioned before develop in time and, after a short competition, the tangential 
force acting in the slip area prevails, see Figure 4.21.  
 
 

Fig. 4.20. Variation of the stick and slip 
area in time. 
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The dependence of the tangential displacement on the applied tangential load is 
shown in Figure 4.22 for two normal loads, the other input parameters being 
kept the same. Both parameters as well as their maximum values before 
macrosliding increase with normal load, the shape of the graph showing the 
same almost linear part at start followed by a non-linear part close to the 
moment of sliding. 

 
4.4.1.1 Viscoelastic-rigid contact with adhesion 
 
The approach proposed in section 4.2.3.2 for normal contact of a viscoelastic 
material and a rigid one will be used to study the tangential loading of the same 
couple of materials when adhesion is taken into account.  
The contact area as well as the contact pressure increase when the surface forces 
are taken into account. The equations used to calculate the parameters of the 
contact in the case with adhesion are presented in Appendix B, equation (B.9) to 
(B.12). The coefficient of friction is calculated as the ratio of the tangential load 
necessary to initiate sliding to the total normal load over the compressive area, 
i.e. the sum of the normal applied load and the force due to adhesion: 
 

 
an

slidingt

FF
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+
=μ               (4.49) 

  
A polyurethane sphere is normally loaded (Heaviside step load) against a rigid 
flat and subsequently a tangential force Ft(t) = t·10-7 is applied.  
The input parameters used in the calculations are the same as those given in 
Table 4.3 and Table 4.4.  

Fig. 4.22. Tangential load vs. tangential displacement 
for two normal loads Fn, 10-5 and 10-4 [N]. 
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Figure 4.23 shows the effect of adhesion on the tangential load and 
displacement. Both tangential load and tangential displacement are higher when 
adhesion is taken into account.  
 

 
 
 

4.5 Modeling of friction – interfacial layer 
 
According to the Mindlin theory the shear stress in the contact area is related to 
the normal contact pressure by a constant coefficient of friction. Usually this 
coefficient of friction is determined empirically. 
However, an approach is proposed in this section in which friction is determined 
by the shearing of an intermediate layer located in the contact area (Figure 4.24), 
which separates the two bulk phases in contact. 
Since rubber-metal contact is investigated in this research, their surfaces will be 
analyzed. 
Typically, the surface of polymers consists of a weak boundary layer which might 
contain oligomers (i.e. residual unpolymerized chain monomer), greases, oils, 
molecules of water vapor and dust/debris; due to the fabrication process the 
peripheral molecular chains might be aligned in a certain direction. Therefore, 
the properties of the surface are different although related to those of the bulk.  
A characteristic metallic surface consists of several layers such as: 
- a the deformed layer due to work-hardening in manufacturing processes 
- a chemically reacted layer arising from reaction with oxygen from the 
environment or with some other substances leading to nitrides, sulfides and 
chlorides 
- a physisorbed layer formed by physical adsorption of molecules of water vapor, 
oxygen or hydrocarbons from the environment 

Fig. 4.23. Tangential load as a function of tangential 
displacement; the influence of adhesion. 
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- a chemisorbed layer is confined to a monolayer and is formed by bonding of the 
surface through covalent bonds to certain adsorption species.   
The total thickness of the layers summarized above can be up to several tenths of 
microns. 
 

 
In a rubber-metal contact shear will take place in the interfacial layer. It is 
assumed that this interfacial layer behaves as a viscoelastic material, hence, in 
this first approximation, it is modeled by a Maxwell model (Figure 4.9 a). The 
generalized Hook’s law of the Maxwell model is as follows: 
 

 
η
ττγ +=

g
&

&               (4.50) 

 
where γ is the shear strain, τ is the shear stress, g and η are the parameters of the 
mechanical model. The velocity gradient inside of the layer which is the strain 
rate γ&  is taken constant and is given by 
 

 
h
v

dz
dv

==γ&                (4.51) 

  
with v the velocity difference between the two bodies in contact. This velocity v is 
calculated as the slip s at the interface (or deformation of the interfacial layer) in 
t seconds. Now replacing the strain rate by v/h with h the thickness of the 
interfacial layer and expressing the stress rate as  
 

 
dt
ds

ds
d

⋅=
ττ&                (4.52) 

 

Fig. 4.24. Interfacial layer (front view of the contact). 
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the equation (4.50) becomes  
 

 
η
ττ

+⋅⋅=
dt
ds

ds
d

gh
v 1

             (4.53) 

 
The shear stress is taken as: 
 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

⋅
=

η

τ
s

g
vh

vs
             (4.54) 

 
Equation (4.54) gives the shear stress of the interfacial layer which has a certain 
thickness h, a velocity v and deforms with s. 

Example 
The influence of these parameters on the shear stress has been investigated. The 
values of the input parameters shown in Table 4.5 were chosen in such a way 
that they represent a layer which is weak compared to the rubber bulk and is thin 
compared to the asperity radius. The parameters listed in Table 4.3 were kept 
the same. The shear stress has been calculated with equation (4.54). 
 

Table 4.5 Values of the input parameters. 

Parameter Symbol Value Unit 

Thickness of the interfacial layer h 10-8 m 

Elasticity of the spring (Maxwell model) g 106 [N/m2] 

Viscosity of the dashpot (Maxwell η 105.5 [N⋅s/m2] 

Velocity v 10-8 [m/s] 

Deformation (denoted by slip) s 10-8 [m] 

 
 
Figure 4.25 shows that by increasing the thickness h of the interfacial layer the 
shear stress decreases as indicated by the straight line plotted in logarithmic 
coordinates. Then, varying the velocity it can be observed that higher values of 
the shear stress correspond to higher velocities, see Figure 4.26.  
Similarly, from equation (4.52) it follows that the shear stress increases by 
increasing the viscosity of the dashpot. Hence, by modeling the behavior of the 
interfacial layer with a Maxwell model the shear stress in the interfacial layer can 
be estimated as a function of  the material parameters (g, η), geometry (h) and 
operational parameters (v, s).  
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4.6 Modeling of static friction 
 
4.6.1 Mechanism of static friction  
 
The mechanisms of static friction were comprehensively discussed in Chapter 2, 
where, based on the experimental evidence found in literature, it has been 
decided that the theoretical model proposed by Mindlin can be used to describe 
the preliminary stage of friction for a rubber-like material/rigid couple. 
 

 
Hence, when a viscoelastic body is loaded normally and tangentially against a 
rigid one, a contact area is created which comprises a stick zone surrounded by a 
slip region. By increasing the tangential load, the slip zone increases up to the 
moment of macrosliding when it occupies the whole contact area, see Figure 
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Fig. 4.26. Variation of the shear 
stress with velocity. 
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Fig. 4.25. Variation of the shear stress 
with the thickness of the interfacial layer. 
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Fig. 4.27. Relation between the contact area and the 
parameters of the static friction regime. 
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4.27. This is the moment which corresponds to the maximum static friction force 
Fs and to the limiting displacement δl. 
 In the next sections, the parameters which define the inception of macro-
sliding, i.e. maximum static friction force and limiting displacement are 
calculated and the influence of several parameters is investigated. 
 
4.6.2 Modeling of static friction  
 
A viscoelastic sphere is normally loaded against a rigid plane surface. 
Subsequently, an increasing tangential load is applied up to the occurrence of 
macro-sliding (see Figure 4.16). As shown in Figure 4.27, the static friction 
regime is determined by the maximum static friction force and limiting 
displacement, which are interrelated as a result of the mechanism assumed to 
take place. The relationships between these two main parameters are derived in 
the following for a load-controlled case and also the time tmax corresponding to 
the static friction.  
First, the system which is studied is schematically shown in Figure 4.28. It is 
composed of the rubber-like material (bulk) which is modeled by a Standard 
Linear Solid and the interfacial layer which is described by a Maxwell model. 
 

 
 
As indicated in section 4.4, friction is attributed to this interfacial layer which 
behaves as a viscoelastic material. It is assumed that the interfacial layer will 
deform only in tangential direction by shear, while in normal direction only the 
rubber bulk is having a contribution. Hence, the shear stress is given by equation 
(4.54) which is a function of the effective interfacial layer thickness, velocity, 
deformation (or slip) and properties of the mechanical model, namely: 
 

Fig. 4.28. Equivalent mechanical models for a) rubber bulk – 
Standard Linear Solid, b) interfacial layer – Maxwell model. 
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 ( )ητ ,,,, 3gsvhf=               (4.55) 

 
or for v = s/t the equivalent relation reads: 
 

 ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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⋅
⋅⋅

==

23

3 11
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η
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sgtshf           (4.56) 

 
Since the load-controlled case is considered, the normal load is given by 
equation (4.37). The applied tangential load is taken as an increasing function of 
time:  
 
 ( ) tctFt ⋅= 1                (4.57) 

 
where c1 is a constant. At a certain time instant t = tmax, macrosliding is initiated 
and the static friction force can be written in several equivalent ways: 
 
 ( ) AFtFF meannts ⋅=⋅== τμmax                    (4.58) 

 
with A the contact area and τmean the mean shear strength of the interface, see 
Figure 4.29. 

 
The tangential displacement corresponding to this time instant is the limiting 
displacement δlv which is obtained from equation (4.44) as: 
  

( ) ( ) ( )
( )

( ) ( ) ( )
8

23
8

23 maxmax

max

max
max

νϕτπνϕμδ −⋅⋅⋅⋅⋅
=

⋅
−⋅⋅⋅⋅

=
tta

ta
tFt vmean

v

n
lv          (4.59) 

This limiting displacement is twice the maximum slip sv at the edge of the 
contact circle: 

τmean 

Fn 

Ft 

1 

2 

Fig. 4.29. Tangential loading of a viscoelastic sphere 
against a rigid flat; τmean - mean shear strength of the 

interface just before macrosliding. 
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 ( ) ( )( )maxmaxmax ,2 ttast vvlv ⋅=δ                       (4.60) 

 
It is assumed that the slip at the interface is constant and equal to the maximum 
slip at the edge of the contact on the point of sliding when the radius of the stick 
zone cv goes to zero. Substituting the slip sv at the edge of the contact (equation 
4.60) into equation (4.54) will conduct to an equation in which the unknown 
parameter is the time instant tmax corresponding to the static friction force 
 

 
( ) ( ) ( )

3

32

⋅
−2⋅⋅⋅⋅⋅3−⋅16

⋅
16

−=
gh

gttah
t v νπϕη maxmax

max          (4.61) 

 
Equation (4.61) is solved numerically with respect to tmax.  
The steps followed in calculating the static friction force (or coefficient of static 
friction) and limiting displacement are given in the flow chart presented in 
Figure 4.30. Summarizing the input parameters comprise the constant normal 
load (load-controlled case), the increasing tangential load, the radius of the 
spherical asperity, material parameters in terms of Poisson’s ratio, creep 
compliance function (bulk material) and the parameters of the interfacial layer 
such as the height and the elastic modulus of the spring and viscosity of the 
dashpot of the Maxwell model. 
Having introduced these parameters the contact radius is calculated, then the 
time when macrosliding is initiated, followed by the static friction force, 
coefficient of static friction and limiting displacement.  
 

Input parameters 
Fn, Ft(t), R, ν, h, φ(t), g3, η2 

av(t) - eqn. (4.39) 

tmax – eqn.(4.61) 

Fs = Ft(tmax) 

μs = Fs/Fn 

δlv(t) - eqn. (4.59) 

Fig. 4.30. The flow chart used to calculate the 
static friction force and limiting displacement. 
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4.6.3 Parametric study 
 
In this section, the influence of several parameters without adhesion on the 
static friction force and limiting displacement is investigated. Since the 
coefficient of static friction is usually used in practice its dependence on various 
parameters is also presented. 
 
Example 1 
Influence of normal load on the static friction force and limiting 
displacement 
 
Before discussing asperity contacts, a macroscopic example will be presented. 
When carrying out single-asperity friction measurements, the asperity, which is 
taken as a sphere, is usually scaled up. By way of example a sphere with radius R 
= 2 [mm] is considered. The rest of the input parameters used in calculations are 
listed in Table 4.6. 
 

Table 4.6 Values of the input parameters. 

Parameter Symbol Value Unit 

Applied tangential load Ft Ft = 10-3.5⋅t1.5 [N] 

Radius of the sphere R 2⋅10-3 [m] 

Thickness of the interfacial layer h 2⋅10-7 [m] 

Elasticity of the spring (SLS model) g1 6.4⋅107 [N/m2] 

Elasticity of the spring (SLS model) g2 2.3⋅108 [N/m2] 

Viscosity of the dashpot (SLS model) η1 1.5⋅109 [N⋅s/m2] 

Elasticity of the spring (Maxwell g3 107 [N/m2] 

Viscosity of the dashpot (Maxwell η2 106 [N⋅s/m2] 
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The results of the calculations done for different values of the normal load are 
shown in Figure 4.31 and 4.32.  
 The pressure range (maximum pressure) for the set of loads taken in the 
calculations is from 2 to 9 [MPa]. It can be observed that the static friction force 
and limiting displacement increase by increasing the normal load. Conversely, 
the coefficient of static friction decreases at higher normal loads (Figure 4.32). 
Although both the static friction force and normal load increase it seems that the 
increase of normal load is prevailing. 
 

 
 
Influence of material parameters on static friction force and limiting 
displacement 
 
The material behavior has been modeled by a Standard Linear Solid (see Figure 
4.9 c). The parameters of the mechanical model are the elasticity of the springs 
g1 and g2 and the viscosity of the dashpot η.  
In a load-controlled case, which is the contact situation considered in the 
calculations,  the creep compliance function ϕ(t) given by equation (4.14) 
describes the material behavior. 
For a linear viscoelastic material with the Possoins’s ratio 0.5, the shear modulus 
G = E/3 = 1/2⋅ϕ(t). 
The Standard Linear Solid model resembles the behavior of a solid-like material, 
therefore an increase in the elasticity of the springs g1 and g2 will lead to a 
decrease in the creep compliance function ϕ(t), which means an increase in the 
elasticity modulus E of the material (stiffer material). Due to the solid-like 
behavior of the mechanical model a change in the viscosity of the dashpot 
slightly influences the creep compliance function.  
Figure 4.33 shows the variation of the static friction force with the elasticity 
modulus of the spring g1 for a normal load of 1 [N]. 
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The input parameters used in the calculations are summarized in Table 4.6. The 
static friction force decreases with increasing the elasticity modulus of the spring 
g1. A higher g1 corresponds to a stiffer material (high elasticity modulus of the 
material E) which will result in a smaller static friction force. 

 
Similarly to the static friction force, the limiting displacement decreases at 

larger values of the elasticity modulus g1, i.e. stiffer material,  as indicated in 
Figure 4.34.  
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Fig. 4.33. Influence of elasticity modulus g1 of the spring (SLS model) on the 

static friction force. 

Fig. 4.34. Influence of elasticity modulus g1 of the spring (SLS model) on the 
limiting displacement. 
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The variations of the static friction force and limiting displacement with the 
elasticity modulus of the second spring g2 of the SLS model are plotted in 
Figures 4.35 and 4.36. 
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Fig. 4.35. Variation of the static friction force with elasticity modulus of the 

spring g2 – SLS model. 

Fig. 4.36. Variation of the limiting displacement with elasticity modulus of 
the spring g2 – SLS model. 
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The static friction force as well we the limiting displacement decrease at higher 
values of  g2. This behavior can be explained by the increase of the elasticity 
modulus of the material (decrease of the creep compliance function) due to the 
increase of g2.   

Comparing the results obtained by for several g1 and g2 it can be remarked 
that g1 has a larger influence on the static friction force and limiting 
displacement than g2. 
As mentioned before, the viscosity of the dashpot η does play a minor role in the 
value of the creep compliance function, therefore an increase of it will cause a 
slight decrease of the static friction force and limiting displacement.  
Conclusively, the material parameters, i.e. elasticity of the springs g1, g2 and 
subsequently the creep compliance function ϕ(t), can significantly influence the 
static friction force and limiting displacement.  
 
Example 2  
 
In this example an asperity with a radius similar to one obtained from roughness 
measurements on rubber samples is considered. The values of the parameters 
listed in Table 4.7 were kept constant and only one of them was varied to see its 
effect. The maximum pressure for the results shown in Figures 4.37 and 4.38 
ranges from 0.5 to 5 [MPa]. 

 
Table 4.7 Values of the input parameters. 

Parameter Symbol Value Unit 

Applied tangential load Ft Ft = 10-7⋅t [N] 

Normal load Fn 10-5 [N] 

Radius of the sphere R 5⋅10-5 [m] 

Thickness of the interfacial layer h 10-8 [m] 

Elasticity of the spring (SLS model) g1 6.4⋅107 [N/m2] 

Elasticity of the spring (SLS model) g2 2.3⋅108 [N/m2] 

Viscosity of the dashpot (SLS model) η1 1.5⋅109 [N⋅s/m2] 

Elasticity of the spring (Maxwell g3 107 [N/m2] 

Viscosity of the dashpot (Maxwell η2 106 [N⋅s/m2] 

 
Figure 4.37 shows the variation of the static friction force and limiting 
displacement with normal load. Both static friction force and limiting 
displacement increase with normal load. The coefficient of static friction plotted 
in Figure 4.38 decreases with increasing normal load. 
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Then, the thickness of the interfacial layer was varied and the rest of the input 
parameters were kept constant.  
As shown in Figure 4.25, the shear stress decreases by increasing the thickness of 
the interfacial layer at constant normal load. As a consequence, the static friction 
force as well as the limiting displacement decrease for higher values of the 
thickness of the interfacial layer; they are plotted in Figure 4.39. The thickness of 
the interfacial layer is of large influence on the coefficient of static friction, see 
Figure 4.40. The coefficient of static friction decreases significantly for thicker 
interfacial layers. 
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Fig. 4.38. Dependence of coefficient of 

static friction on normal load. 
Fig. 4.37. Dependence of static friction force 

and limiting displacement on normal load. 
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Subsequently, the radius of the viscoelastic sphere was varied. It can be observed 
in Figure 4.41 that the static friction force and also the limiting displacement are 
larger for larger radii of the ball.  
 

 
 
The coefficient of static friction increases with the radius of the sphere, too 
(Figure 4.42). It is worth mentioning that when the height of the interfacial layer 
is not very small compared to the radius of asperity, as for instance for R = 10-6 
[m] and h = 10-8 [m], the value of the coefficient of static friction drops 
significantly as also showed in Figure 4.40.  
Conclusively, in order to have a low coefficient of static friction, as it is usually 
required in practice, the interfacial layer has to be thick and the normal load and 

Fig. 4.40. Variation of the coefficient of static 
friction with the thickness h of the interfacial 

layer. 
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Fig. 4.41. Static friction force and limiting 
displacement vs. radius of the ball. 
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the radius of the asperity have to be small. The same conditions are required also 
for smaller limiting displacements. 
 

 
 
4.6.4. Adhesion effect on the single-asperity static friction 
model 
 
The approach proposed in section 4.2.3.2, for the contact with adhesion between 
a viscoelastic asperity and a rigid flat, is used in the single-asperity static friction 
model when surface forces are taken into account. 
It has been shown that due to the surface forces acting inside of the contact area, 
the apparent normal load increases, as well as the radius of the contact circle.  
The algorithm presented in Figure 4.30 applies also in the case with adhesion; 
the radius of the contact area av(t) is replaced by the radius of the contact area 
including surface forces acv(t) (see equation B.12 in Appendix B) and the total 
normal load is Fn1 which is calculated with equation (B.10) from Appendix B. 
The input parameters used in calculations are the same as those from Table 4.3 
regarding Wv and Table 4.7 with respect to Fn, Ft(t), R, ν, h, φ(t), g3, η2. The 
pressure range in the case without adhesion for the loads indicated in Figure 
4.43 is from 0.2 to 5 [MPa], while in the case with adhesion the pressure range 
increases taking values from 4.3 to 5.6 [MPa]. This increase in the pressure range 
in adhesive contacts is due to the increase in the total normal load which for the 
input parameters considered is larger than the increase in the contact area.  

Fig. 4.42. Coefficient of static friction 
force vs. radius of the ball. 
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The results of the calculations are presented in comparison with the case without 
adhesion. Figure 4.43 shows variation of the static friction force with limiting 
displacement for several normal loads. A first remark is that the static friction 
force as well as the limiting displacement are larger in the case with adhesion. 
The second remark is with respect to the variation of the static friction force and 
limiting displacement with normal load for adhesive contact. It can be noticed 
that they slightly increase due to normal load. An explanation is that the 
adhesion force is quite large at very low applied loads, therefore the total normal 
load is mainly due to surface forces.   
Conversely, the coefficient of static friction is smaller in the case with adhesion, 
see Figure 4.44. Although the static friction force increases due to surface forces, 
the increase in the apparent normal load Fn1 is even higher leading to the drop in 
the value of the coefficient of static friction as shown by equation 4.49. 
 
 

4.7 Summary and conclusions 
 
A single-asperity contact and static friction model including adhesion has been 
developed suitable for rubber/metal contacts. Friction is attributed to the 
interfacial layer which separates the bulk of materials in contact. This interfacial 
layer has been modeled by a Maxwell model. 
A mechanism similar to that described in the Mindlin theory is assumed to take 
place in the rubber-metal asperity contact. Accordingly, a limiting displacement 
is required before macrosliding is initiated. A relationship between the limiting 
displacement and the maximum static friction force is obtained; then, 
substituting the shear stress developed in the interfacial layer, the time 
corresponding to the inception of macrosliding and the corresponding tangential 
load are calculated. 

Fig. 4.43. Influence of adhesion on the static 
friction force vs. limiting displacement. 

0.E+00

1.E-07

2.E-07

3.E-07

4.E-07

5.E-07

6.E-07

7.E-07

8.E-07

9.E-07

5.E-10 7.E-10 9.E-10 1.E-09 1.E-09 2.E-09 2.E-09 2.E-09

Limiting displacement [m]

St
at

ic
 fr

ic
tio

n 
fo

rc
e 

[N
]

w ithout adhesion

w ith adhesion

 

  Fn[N] 
10-8 10-7

10-6
10-5

10-4

10-4

10-5

   10-8, 10-7, 10-6

0.001

0.01

0.1

1

1.E-08 1.E-07 1.E-06 1.E-05 1.E-04

Normal load [N]

Co
ef

fic
ie

nt
 o

f s
ta

tic
 fr

ic
tio

n 
[-] w ithout adhesion

w ith adhesion

 
Fig. 4.44. Influence of adhesion on the 

coefficient of static friction. 

log10 

log10 



Chapter 4  

 -94- 

At low loads adhesion plays a significant role. Therefore it has been modeled by a 
modified JKR theory which takes into account the viscoelastic behavior of 
rubber. 
A parametric study is presented regarding the influence of several parameters 
such as normal load, material parameters, geometry (radius of the sphere), 
height of the interfacial layer on the static friction force (coefficient of static 
friction) and preliminary displacement.  
A scale effect in terms of the radius of asperity has been observed. The coefficient 
of static friction decreases significantly for very small radii of asperities. 
The results of calculations show that in order to have a smaller coefficient of 
static friction the normal load has to be increased, the radius of asperity has to 
be smaller or the interfacial layer should be thicker. 
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Chapter 5  
 
 

Multi-asperity static friction model 
 

Introduction 
 
 In Chapter 3 it has been shown that surface roughness plays a 

significant role in the contact and friction between surfaces. A few 
approaches used to model the surface roughness have been 
discussed and the main parameters which describe the surface 
roughness have been introduced. Then, in Chapter 4 a single-
asperity static friction model for a viscoelastic-rigid contact has 
been developed. In this chapter, the single-asperity static friction 
model is extended to the multi-asperity case by using a statistical 
approach. As indicated in Chapter 3 this multi-summit approach 
is usually suitable for cases where the real contact area is a small 
fraction of the apparent contact area. Thus, a multi-asperity 
approach is proposed for modeling static friction between a 
rough viscoelastic surface and a smooth rigid plane. Finally, the 
results obtained using these approaches are discussed.  

 
 

5.1 Viscoelastic/rigid multi-summit contact  (type I) 
 
5.1.1 Normal loading of viscoelastic/rigid multi-summit 

contact 
 
It has been shown in section 3.5.2 that the surface roughness can be modeled as 
composed of a set of spherical summits which have the same radius and their 
heights following a statistical distribution, as for instance a Gaussian 
distribution. 
This theory has been extended to viscoelastic-rigid contacts by Hui, Lin and 
Baney [56] for several loading histories such as constant load test, load 
relaxation test and constant displacement rate test. In their approach the 
summits are exponentially distributed in order to obtain an analytical solution 
for the real contact area and for the total normal load.  
 In this chapter, the case of a viscoelastic rough surface which is normally 
loaded against a rigid one is considered. A depiction of a multi-summit contact 
was given in Figure 3.16, see Chapter 3. It is remembered that the parameters 
describing the topography of the surface with respect to the mean radius of 
summits β, the density of summits η and standard deviation of the summit 



Chapter 5  

 -96- 

heights σs were determined in Chapter 3 from the surface roughness data. 
 The equations regarding the real contact area Ar and the total normal load 
Fnt carried by the surfaces in contact are given for a load-controlled case. These 
equations rely on the single-asperity contact parameters which were obtained in 
Chapter 4.  
The number of summits in contact at a certain separation can be calculated with 
 

 ( )∫
∞

⋅⋅=
h

nc sdsAn Θη                  (5.1) 

 
where An denotes the nominal contact area, σs is the standard deviation of the 

summit heights, sss σ=  is the normalized summit height, shh σ=  is the 

normalized separation, and ( )sΘ  is the normalized Gaussian height distribution 

which is calculated with  
 

( ) 2

2

2
1

s

es
−

⋅=
π

Θ                 (5.2) 

 
Then, the real contact area is given by: 
 

 ( ) ( )∫
∞

⋅−⋅⋅⋅⋅⋅=
h

enr sdshsAA Θπσβη              (5.3) 

 
where β, η, and σs are the parameters describing the microtopography of the 
surface. The total normal load is calculated as the sum of all normal loads carried 
by the asperities in contact and is given by the following equation: 
 

 ( ) ( ) ( )∫
∞
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σβη 2
3

2
3

2
1

1
3
8

                      (5.4) 

 
Similarly, the equations (5.1) to (5.4) can be derived for a displacement-
controlled case.  
Thus, for a certain separation h the number of asperities in contact, the real 
contact area and the total normal load carried by the summits can be calculated 
using the equations shown above. 
 Figure 5.1 illustrates the fraction of area in contact versus nominal 
pressure for two surfaces, a rough (β = 0.6 [µm], σs =1.9 [µm], η = 4⋅1010 [m2]) 
and a rather smooth one (β = 343.4 [µm], σs =0.016 [µm], η = 1.4⋅1010 [m2]), at 
the time instant t = 2 [s]. Clearly, the fraction of area in contact is much larger 
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for the smooth surface at the same nominal pressure. It can be observed that 
increasing the nominal pressure, the fraction of area in contact grows. 

 
 
 
5.1.2 Tangential loading of viscoelastic/rigid multi-
summit contact 
 
The tangential loading of elastic surfaces has been studied before, the existing 
models relying on the single-asperity approach which was described in section 
4.3. Fujimoto et al. [58] have studied the micro-displacement of two elastic 
surfaces subjected to an increasing or decreasing tangential load. Bureau, Caroli 
and Baumberger [57] extended the Greenwood-Williamson approach to the 
tangential loading (or unloading) of two rough elastic surfaces of identical RMS. 
In both models a constant coefficient of friction is taken for all micro-contacts, 
irrespective of the normal load carried by each microcontact and of the radius of 
summits. 
 An approach is proposed in this section for the tangential loading of a 
viscoelastic rough surface pressed against a rigid flat. Thus, the multi-summit 
contact introduced in section 5.1.1 is subsequently loaded by an increasing 
tangential load. It is assumed that, at asperity level, the mechanism described in 
Chapter 4 takes place. Accordingly, at low tangential loads the contact area 
comprises a central adhesive region surrounded by an annular sliding zone. As a 
result, at a certain separation and for a tangential load smaller than the force 
necessary to initiate macro-sliding, so-called maximum static friction force, the 
multi-contact interface will be composed of micro-contacts which are in the 
partially-slip regime and micro-contacts which are totally sliding. 
Macro-sliding will occur if all contacting summits are in the fully sliding regime. 
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   Fig. 5.1. Fraction of area in contact vs. nominal pressure. 
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A condition has been set for an elastic multi-contact interface by Bureau, Caroli 
and Baumberger [57] which provides a critical summit height above which the 
micro-contacts are partially sliding. In their approach, a constant local 
coefficient of friction is considered for all micro-contacts. 
Using the method presented in [57], a critical summit height is derived for a 
viscoelastic multi-contact interface. From the single-asperity static friction 
model (equation 4.44) it follows that: 
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where δtv is the remote tangential displacement or preliminary displacement and 
μ is the local coefficient of static friction. Rearranging the factors in equation 
(5.5) leads to: 
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The right-hand side of equation (5.6) is a positive real number for Ft ≤ μ·Fn, thus: 
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The indentation depth of the summit δn can be replaced by (z - h), as follows 
from the multi-summit geometry depicted in Figure 3.16. Then, the inequality 
(5.7) becomes:  
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From equation (5.8) it can be inferred that the summits which have the height: 
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are in the fully sliding regime because they carry a tangential force which is equal 
to or larger than the maximum static friction force. The micro-contacts of which 
heights satisfy the relation z ≥ sc are in the partially-slip regime. 
The assumption of Bureau et al. of a constant local coefficient of friction is 
removed in this approach. Instead, a local coefficient of friction μ(Fn) which 
depends on the normal load carried by each micro-contact is used instead. μ(Fn) 



Multi-asperity static friction model 

 -99- 

can be obtained from the static friction model presented in Chapter 4.   
The tangential displacement δtv is the same for all micro-contacts and is equal to 
the displacement of the mass center of the body, denoted by global tangential 
displacement, because it is assumed that the rubber is not subjected to bulk 
strain. 
The total tangential load carried by the multi-contact interface can be written as: 
 
 slipstickt FFF +=                                                          (5.10) 
 
where Fstick component is calculated as the sum of all tangential loads carried by 
the micro-contacts which are not fully sliding. That means that their contact 
areas are composed of stick and slip regions. Fstick component is given by 
equation: 
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The Fslip component is taken as the sum of all tangential loads carried by the 
micro-contacts which are fully sliding and is calculated with equation: 
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                    (5.12) 

 
 
5.1.3 Static friction of viscoelastic/rigid multi-summit 
contact 
 
Having obtained the tangential load carried by the multi-contact interface, the 
maximum force required to initiate macro-sliding (or maximum static friction 
force) can be determined as the sum of all tangential loads causing gross sliding 
of all micro-contacts. When this condition is obeyed, the partially sliding 
component Fstick becomes zero and the condition can be written as: 
 
 0max == stickslipst FifFF             (5.13) 
 
The algorithm used in calculation of the maximum static friction force and global 
coefficient of static friction between surfaces is presented in Figure 5.2. Given 
the micro-geometry, the nominal area and the material parameters the real 
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contact area and the separation can be calculated.  At a certain time instant the 
normal load carried by the critical asperity can be determined. Then, assuming a 
tangential displacement the critical height is obtained. For the mean summit 
radius β the function μ(Fn) can be determined using the single-asperity static 
friction model. Next, the tangential load carried by each microcontact is 
calculated. If the partially slip component of the tangential force is not zero the 
tangential displacement is further increased until all micro-contacts are fully 
sliding. This maximum tangential displacement corresponding to the occurrence 
of macro-sliding is taken as the global limiting displacement. 
At this stage, the maximum static friction force is reached. 
 

 
 
 
 

Fig. 5.2. Flowchart – calculation of global 
coefficient of static friction. 
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Example 
 
The case of a rough rubber (polyurethane) flat surface in contact with a rigid flat 
is considered in this example. A tangential displacement is applied to the rubber 
surface at a certain time instant and the tangential load carried by the surface is 
evaluated. The tangential displacement is increased till all micro-contacts are 
fully sliding.  
The summit roughness parameters obtained in section 3.5.2.2 are considered. 
All input parameters are listed in Table 5.1. In principle, they are kept constant 
during a series of calculations and only one of them is modified, of which 
influence on the static friction force and coefficient of static friction is studied. 
At first, the influence of total normal load on the global coefficient of static 
friction is investigated for the same time instant t = 2 [s], arbitrarily chosen. The 
local coefficient of friction is taken as a function of the normal load carried by 
each micro-contact and is given by ( ) 610−4− ⋅10⋅16= .. nnl FFμ for a mean summit 
radius of 343.4 [μm]. This dependence has been obtained using the single-
asperity static friction model described in Chapter 4.  

 

Table 5.1 Values of the input parameters. 

Parameter Symbol Value Unit 

Average summit radius β 343.4 [μm] 

Summit density η 1.41·1010 [m-2] 

Standard deviation of the summit σ 0.016 [μm] 

Elasticity of the spring g1 6.4·107 [N/m2] 

Elasticity of the spring g2 2.3·108 [N/m2] 

Viscosity of the dashpot η1 1.5·109 [N·s/m2] 

Elasticity of the spring g3 107 [N/m2] 

Viscosity of the dashpot η2 106 [N·s/m2] 

Thickness of the interfacial layer hi 5·10-8 [m] 

Total normal load Fnt 20 [N] 

Nominal area An 6·10-4 [m2] 

Time t 2 [s] 

 
Figure 5.3 shows that increasing the total normal load the global coefficient of 
static friction decreases. 
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The static friction force versus limiting displacement is plotted in Figure 5.4 for 
the same normal loads plotted in Figure 5.3. It is observed that both static 
friction force and limiting displacement increase with normal load. It can be 
noticed that the static friction force increases much faster than the limiting 
displacement.  
A similar trend with respect to the variation of static friction force, preliminary 
displacement and coefficient of static friction with normal load has been also 
obtained in the single-asperity case, see section 4.6.3. 
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Fig. 5.3. Variation of the coefficient of static friction with normal load. 

Fig. 5.4. Static friction force (Fs) vs. limiting 
displacement (δl) for different normal loads. 
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Secondly, the influence of surface roughness on the coefficient of static friction 
has been investigated. The average roughness Ra has been modified by varying 
the mean summit radius β and the standard deviation of the summit heights σ, 
and keeping the summit density η and the product of these three parameters 
constant. By decreasing the average summit radius and increasing the standard 
deviation of the summit heights, smoother surfaces can be simulated, that means 
smaller Ra.  
It is worth mentioning that the local coefficient of static friction depends also on 
the radius of the summit (see Chapter 4). Therefore, the dependence of the local 
coefficient of static friction on normal load for several summit radii which 
corresponds to several Ra has been determined. These functions are presented in 
Table 5.2. The rest of the input parameters are the same as those given in Table 
5.1. 
 

Table 5.2. μl (Fn) for different summit radii. 

Average summit 

radius, β [μm] 
μl (Fn) 

343 μl(Fn)= 6.1·10-4 ·Fn
-0.61 

90 μl(Fn)= 4.7·10-4 ·Fn
-0.58 

50 μl(Fn)= 4.4·10-4 ·Fn
-0.57 

10 μl(Fn)= 5.4·10-4  ·Fn
-0.47 

 
Figure 5.5 indicates that rougher surfaces, i.e. larger Ra, result in smaller 
coefficients of static friction, while smoother surfaces determine higher 
coefficients of static friction. In particular, very smooth surfaces Ra < 0.1 [μm] 
will result in high coefficients of static friction.  
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The development of the tangential load with tangential displacement is 
illustrated in Figure 5.6. It can be remarked that for the input parameters given 
in Table 5.1 the partially-slip component F stick is very small from the beginning. 
This indicates that for Fnt = 20 [N] most of the micro-contacts are already in the 
fully-sliding regime. 
  

 
In order to determine the effect of viscoelasticity on the static friction force, 
limiting displacement and coefficient of static friction, two time instants have 
been taken in the calculations t = 2 [s] and 10 [s] for a normal load Fnt of 10 [N]. 
The rest of the input parameters are given in Table 5.1. The results of the 
calculations are presented in Table 5.3. It can be observed that the static friction 
force and global coefficient of static friction increase in time due to the increase 
of the real contact area. The limiting displacement decreases in time because of 
the decrease in the local coefficient of static friction. This results in smaller 
tangential displacement before gross sliding. The results presented in Table 5.3 
indicate a larger effect of time on the limiting displacement compared with the 
static friction force. 
 

Table 5.3 Results – viscoelastic effect. 

Parameter t = 2 [s] t = 10 [s] 

Fst max [N] 10.2 10.7 

δlg [m] 2.35·10-8 1.8·10-9 

μsg [-] 1.02 1.075 
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5.2 Viscoelastic/rigid multi-asperity contact (type 
III) 

 
5.2.1 Viscoelastic/rigid multi-asperity contact model 
 
Equivalent asperities versus summits 
 
The multi-asperity contact or type III contact has been previously introduced in 
section 3.5.4. In this chapter, the multi-asperity contact model characterized by 
large microcontacts will be called deterministic model. According to this 
approach, the surface roughness can be modeled as composed of many asperities 
which have different radii and different heights. Moreover, the multi-asperity 
contact model takes into account the merging of adjacent asperities into 
“equivalent asperities” at higher normal loads (or smaller separations between 
surfaces) as described by Masen and de Rooij [59]. The merging of asperities at 
smaller separations is depicted in Figure 5.7. The equations for the radii and 
height of the equivalent asperity have been given in Appendix A, see equations 
(A1) to (A3).  
 

 
 
When comparing the statistical case with the deterministic case, a first 
observation is that the number of contacting equivalent asperities is usually 
much smaller than the number of contacting summits at the same normal load. 
This is illustrated in Figure 5.8 and Figure 5.9 where the locations of the 
summits and equivalent asperities are plotted at a normal load of 10-2 [N] (pn = 
6.7·104Pa). The input parameters used in the calculations are given in Table 5.4. 
 
 

Fig. 5.7. Merging of adjacent asperities into equivalent asperities at 
smaller separations between surfaces, adapted from [59]. 
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Although the number of equivalent asperities is smaller than the number of 
summits, the real contact area given by these asperities can be larger than that 
given by the individual summits. As indicated by Figure 5.10, the increase of the 
fraction of area in contact, which is calculated as the ratio of the real contact area 
to the nominal area, becomes more important at higher normal loads.  
 

 
 
Still, the fraction of area in contact remains proportional to the nominal contact 
pressure although the slope is higher.  

Fig. 5.10. Fraction of area in contact vs. nominal pressure. 
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Table 5.4 Values of the input parameters. 

Parameter Symbol Value Unit 

Average summit radius β 343.4 [μm] 

Summit density η 1.41·1010 [m-2] 

Standard deviation of the summit σ 0.016 [μm] 

Average roughness Ra 0.013 [μm] 

Elasticity of the spring (SLS model) g1 6.4·107 [N/m2] 

Elasticity of the spring (SLS model) g2 2.3·108 [N/m2] 

Viscosity of the dashpot (SLS model) η1 1.5·109 [N·s/m2] 

Nominal area An 1.5·10-7 [m2] 

Time t 2 [s] 

 
 
Bulk deformation 

A characteristic aspect of the contacts involving rubber is the deformation of the 
bulk. This means that not only the summits are deforming as is the case in the 
model presented in section 5.1.1, but also the bulk of the material.  Thus, an 
approach is followed in which the deformation caused by a Hertzian pressure 
over a micro-contact area (Figure 5.11) is also affecting the deformation behavior 
of adjacent asperities. 
 

 
The equations for the normal displacement due to a Hertzian pressure inside 
and outside the contact area for an elastic material are given by Johnson in [18]. 
These equations have been written for a linear viscoelastic material using the 
correspondence principle and are given by: 
 

Fig. 5.11. Adjacent asperities; contact areas and Hertzian 
pressure distributions. 
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where δb is the bulk deformation, p0 is the maximum Hertzian pressure, a is the 
contact radius, r is the distance between the location of the acting pressure and 
the point where the resulting deformation has to be known, φ(t) is the creep 
compliance function, and ν is the Poisson’s ratio. 
 

 
The reciprocal influence of the displacement fields caused by Hertzian pressure 
over two micro-contacts is shown in Figure 5.12. The time effect of individual 
asperities is neglected. Because the material is taken as linear viscoelastic, the 
displacement fields can be simply added in order to determine the total 
displacement of a micro-contact due to the Hertzian pressure over the contact 
area and also due to the neighboring displacement fields. 
The overall normal displacement of the surface due to the bulk deformation 
causes a decrease of the number of asperities in contact compared with the case 
without bulk deformation. 
 Figure 5.13 shows the iterative algorithm used to calculate the separation 
and the contact area between two normally loaded surfaces taking into account 
the interaction between asperities caused by the bulk deformation. Here, the 
bulk deformation is taken into account as an adapted asperity height. 
 In summary, a deterministic contact model for a rough viscoelastic surface 
in contact with a rigid flat is developed which takes into account the merging of 
asperities at higher loads as well as the bulk deformation. This deterministic 

Fig. 5.12. Displacement fields of two adjacent asperities subjected to Hertzian 
pressure and total deflection due to the interaction of the displacement fields. 
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contact model is also used in the static friction model between surfaces. 
 

 
 
5.2.2 Viscoelastic/rigid multi-asperity static friction 
model 
 
A rough viscoelastic surface in contact with a rigid flat counter surface is again 
considered, as schematically shown in Figure 5.14.  
 

Micro-
geometry 

Material 
parameters 

Contact 
load Fnt 
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separation 

 
Equivalent 
asperities 

Asperity 
loads Fni 

Change 
separation 

Σ Fni = Fnt 
 

Separation 
Contact area 

yes 

no 

Fig. 5.12. Deterministic contact model with bulk deformation -
algorithm. 
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Fig. 5.14. Viscoelastic/rigid surfaces in contact. 
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By applying a normal load Fnt, a number of micro-contacts are created. 
Subsequent application of a tangential displacement δt will cause slipping of a 
part of the micro-contacts while the rest of them will still be in contact with the 
rigid flat.  
At a certain tangential displacement denoted as limiting displacement δlg, all the 
micro-contacts are broken, leading to the full sliding of one surface with respect 
to the other. This is the moment corresponding to the maximum static friction 
force Fst max. 
Then, the static friction force between surfaces is calculated as the sum of all 
static friction forces of the individual asperities in contact. These individual 
static friction forces can be obtained from the single-asperity static friction 
model described in Chapter 4.  
  

locations of 
micro-contacts 

micro-geometry 
radius, height of 

asperities 

normal load 
carried by each 
micro-contact 

time instant t 
tangential displacement 

δt(t) 

static friction time tsi of 
each micro-contact 

tangential load Fti carried 
by each micro-contact 

  t ≥ ts  Fti = Fslip eqn. (5.16) 
 

   t < ts  Fti = Fstick eqn. (5.17) 

material properties φ(t) 
interfacial layer properties 

hi, g3, η2 

nominal area An 
normal load Fnt 

if  all Fsticki  = 0  

increase t 

no 

yes 

Fst max = Σ Fslip 
 

μgs = Fst max/Fn 

Fig. 5.15. Multi-asperity static friction model – algorithm. 
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An algorithm is shown in Figure 5.15 which presents the input parameters and 
the steps which have to be followed in calculation of the static friction force and 
coefficient of static friction. 
 As already mentioned before, the single-asperity static friction model 
presented in Chapter 4 is used to determine the static friction force of each 
micro-contact. However, in that model a known tangential force is applied to the 
micro-contact, which value is not known a priori in a multi-asperity contact. 
Therefore, another approach is taken for two surfaces in contact. In this case, a 
known tangential displacement is applied to one of the surface which gives rise 
to a resistive tangential force (friction force) at the interface. This tangential load 
is unevenly distributed to all micro-contacts.  

The method used to calculate the tangential load carried by the individual 
micro-contacts when a known tangential displacement is imposed, is discussed 
below. 
A viscoelastic asperity is normally loaded against a rigid flat. Subsequently, a 
known tangential displacement δt(t)= c1 ·t  is applied, where c1 is a constant. As a 
result a resistive tangential load will occur at the interface which increases in 
time. The time ts corresponding to the maximum static friction force is given by 
equation (4.61).  
Then, taking a certain time instant t it can be established if the micro-contact is 
fully or partially sliding by using the following procedure. It is assumed that a 
micro-contact is fully sliding when t ≥ ts, then the tangential load is given by (see 
also equation 5.7): 
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When t < ts the tangential load carried by the partially-slip micro-contact is 
calculated with equation: 
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where δn is the normal displacement or the indentation depth and ν is the 
Poisson’s ratio. 
  
 
Example 1 

The algorithm presented in Figure 5.15 is applied to the contact of a rather 
smooth rubber surface with a rigid flat. The nominal contact area and the 
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material parameters are the same as those from Table 5.4. The measured surface 
topography was shown in Figure 3.14, see Chapter 3. The rest of the input 
parameters are given in Table 5.5. 
 

Table 5.5 Values of the input parameters. 

Parameter Symbol Value Unit 

Average roughness  Ra 0.013 [μm] 

Elasticity of the spring (Maxwell g3 107 [N/m2] 

Viscosity of the dashpot (Maxwell η2 106 [N·s/m2] 

Thickness of the interfacial layer hi 5·10-8 [m] 

Tangential displacement δt δt(t)= 5·10-8 ·t   [m] 

 
The results of a load-controlled case using the three contact approaches 
discussed in the previous sections, statistical (summits), deterministic 
(equivalent asperities) and deterministic including bulk deformation, are 
presented regarding the variation of the static friction force and coefficient of 
static friction with normal load (Figure 5.16).  
 

 
In Figure 5.16 the static friction force is plotted against the normal load for the 
model system developed, i.e. statistical, deterministic and deterministic with 
bulk deformation. The nominal pressure ranges from 3·103 [Pa] to 2·104 [Pa]. It 
can be noticed that in all cases the static friction force increases with normal 
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Fig. 5.16. Variation of the static friction force with normal load; comparison between 
statistical model and deterministic model. 
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load. This is due to the increase in contact area, see Figure 5.17. The second 
remark is that the static friction force is larger when equivalent asperities 
(deterministic) are used instead of summits (statistical). This is due to the large 
microcontacts which slip at larger forces. If the bulk deformation is taken into 
account, the size of the microcontacts decreases and therefore the static friction 
force. It has been shown in section 5.2.1 that the overall deflection of the surface 
increases when the bulk deformation is considered, which causes a decrease of 
the number of asperities in contact. 
The differences in these three approaches seem to become more significant at 
higher normal loads. 
 

 
Although the real contact areas are similar in the deterministic case with and 
without bulk deformation at least at not very high normal loads, the differences 
in the static friction forces are much larger. This is due to the geometry (radius 
and height) of the individual asperities in contact which also determines the 
normal loads carried by individual asperities.  
In Figures 5.18 and 5.19 the contact areas and the loads carried by the asperities 
in contact are plotted for a total normal load of 2 [mN] using the deterministic 
contact model with and without bulk deformation.  
The number of asperities in contact is larger when the bulk deformation is not 
considered. Moreover many of these asperities have relatively large contact areas 
and bear high normal loads which will result in larger static friction forces, as 
has been shown in Chapter 4 which deals with the single-asperity static friction 
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Fig. 5.17.  Real contact area vs. normal load for the three contact models: statistic, 
deterministic and deterministic with bulk deformation. 
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model. The sum of all static friction forces  in this case is a higher total static 
friction force compared with the case with bulk deformation where only a small 
number of asperities contribute significantly to the total static friction force, see 
Figures 5.18 and 5.19. 
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Fig. 5.19. Local contact areas vs. local loads of the asperities in contact in the 
deterministic case with bulk deformation for a total normal load of 2 [mN]. 
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In the statistical case the number of summits in contact is quite large compared 
to the number of asperities in the other two models. However, most of them 
carry very low loads which will result in smaller static friction forces. 
 

 
Unlike the static friction force, the variation of the coefficient of static friction 
with normal load shows different trends for all three approaches, see Figure 
5.20. 
In the statistical case, the coefficient of static friction decreases by increasing 
normal load. An increase of the coefficient of static friction is observed in the 
deterministic case. Taking into account the bulk deformation in the 
deterministic model, the coefficient of friction initially decreases similarly to the 
statistic case, then slightly increases at higher loads. Although in all cases (see 
Figure 5.16) the static friction force increases with normal load, the coefficient of 
static friction may slightly increase or decrease. This can be explained by the rate 
of increase of the static friction force which can be larger/smaller than that of the 
normal load. 
 
Example 2 

A second example is considered in which the same nominal area is taken in the 
calculations with a different surface topography having an average roughness Ra 
= 0.068 [μm]. The rest of the input parameters are the same as in example 1. 
 It can be observed from Figure 5.21 that, similarly to the results plotted in 
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Figure 5.16, the static friction force increases with normal load for all three 
models. In this example the nominal pressure ranges from 700 [Pa] to 8·105 [Pa].  
Using the deterministic approach without bulk deformation, the static friction 
force shows larger values than in the statistical case with summits. Adding the 
bulk deformation to the deterministic case, static friction force slightly 
decreases. It can be noticed that for this rougher surface the effect of bulk 
deformation is less pronounced than in the case of a rather smooth surface (see 
example 1). 
  
 

 
 
The coefficient of static friction is plotted in Figure 5.22 as a function of normal 
load for the three models.  
In the deterministic case, the coefficient of static friction decreases at relatively 
low loads and then increases slowly due to an increase of the number of 
asperities in contact. If the bulk deformation is taken into account the coefficient 
of static friction drops to a relatively steady level. The coefficient of static friction 
in the statistical case is much smaller than  the values obtained in the 
deterministic case. 
These graphs can be explained as in example 1 by the geometry and the load 
carried by the asperities/summits in contact which determine the static friction 
force of each individual contact and subsequently the global static friction force. 
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Fig. 5.21. Variation of the static friction force with normal load; 
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It is worth reminding that the static friction force and limiting displacement are 
two main parameters which define the static friction regime. Therefore, the 
static friction force is plotted against the limiting displacement for the two 
examples considered in Figures 5.23 and 5.24. The normal loads are the same as 
those from Figure 5.16 (example 1) and Figure 5.21 (example 2).  
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Fig. 5.22. Variation of the coefficient of static friction force with normal 
load; comparison between statistical model and deterministic model. 
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For both examples, the static friction force as well as the limiting displacement 
rise with normal load. In example 1, the friction-displacement curves in the 
statistic and deterministic cases are similar. In example 2 only a few values were 
available for the statistic case at positive separation between surfaces. However, 
these values are lower than in the deterministic case.  
Now, comparing the values of the static friction force and of the coefficient of 
static friction from example 1 and 2 at the same normal loads (or nominal 
pressures) it can be concluded that they are larger for the less rough surface 
(example 1, Ra = 0.013 [μm]). 
Conclusively, the approach (statistic or deterministic) used to model the contact 
between surfaces influences the parameters of the static friction regime, i.e. 
static friction force, limiting displacement and coefficient of static friction. The 
results of the calculations reveal that using equivalent asperities instead of 
summits causes larger values of these parameters. 
 An experimental validation of the developed static friction model will be 
presented in the next chapter. 
 
  

5.3 Summary and conclusions  
 
A static friction model has been developed suitable for viscoelastic-rigid surfaces 
in contact. 
Multi-asperity static friction model depends on the behavior of individual micro-
contacts.    
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Three approaches have been used to model the contact between a viscoelastic 
surface and rigid flat. The statistical or multi-summit approach offers a 
simplified solution, based on summits which do not interact with each other. The 
multi-asperity or deterministic model is a more realistic approach which takes 
into account the merging of asperities at larger loads and also the bulk 
deformation.  
Using a deterministic approach that means equivalent asperities instead of 
summits, the static friction force as well as the coefficient of static friction are 
larger compared to the statistical approach.  
Static friction force and limiting displacement are typically larger when the 
deterministic approach is used. The geometry of asperities and the normal load 
carried by the asperities in contact determine the individual static friction forces 
which compose the global static friction force. In the deterministic case the 
number of asperities which have a significant contribution to the total friction 
force due to their large contact areas and high normal loads is larger than in the 
statistical case and also in the case with bulk deformation. 
The results presented in this chapter show that rough surfaces result in smaller 
coefficients of static friction. 
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Chapter 6  
 
 
Experimental results and validation of the 

static friction models 
 

Introduction 
 

A multi-asperity static friction model has been presented in 
Chapter 5 which is based on the single-asperity model introduced 
in Chapter 4. In this chapter, these theoretical models are 
experimentally validated. The materials used in the experiments 
have been characterized in Chapter 3 and 4. Single-asperity 
friction measurements have been carried out on a nano-
tribometer using a ball-on-flat configuration. The influence of 
several parameters such as normal load, radius of the ball and 
elasticity modulus (creep compliance) upon static friction was 
examined.  The experimental results correlate well with the 
calculations. Then, the multi-asperity static friction model is 
validated. The coefficient of static friction was investigated at 
several normal loads. The experimental results resemble the 
theoretical predictions. 

 
 

6.1 Single-asperity static friction measurements 
 
The single-asperity contact can be simply described by a sphere in contact with a 
flat. This approach will be used to investigate experimentally static friction 
between a rubber flat and a rigid asperity.  
It is important to mention that in the single-asperity static friction model a 
rubber asperity has been loaded against a rigid flat in order to study the adhesive 
component of friction. In this way the ploughing component of friction was 
avoided.  
In the experiments, the opposite case, i.e. rigid ball against rubber flat, has been 
used. However, by keeping the normal indentation (or strain) small, the 
ploughing component can be neglected. In this way, rubber plates similar to 
those used in industrial applications (rubber pad forming), of which properties 
were already determined, can be used.  
The experimental investigation has been carried out on a special tribometer 
which is described in the next section. 
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6.1.1 Single-asperity experimental set-up 
 
The nano-tribometer shown in Figure 6.1 is a special device suitable for single-
asperity friction measurements because of its low applied loads ranging from 50 
[μN] up to 1 [N]. Such low loads are in agreement with those carried by 
asperities and required to avoid the ploughing effect. The complete set of the 
equipment specifications are listed in Table 6.1.   
 

 
The main components of the tribometer (see Figure 6.1) are: (1) the instrument 
base, (2) the displacement modules and (3) the measuring head. 
 

Table 6.1 Nano-tribometer specifications (adapted from [61]). 

Parameter Value Unit 

Applied normal load range 6·10-5 ÷1.7 N 

Applied load resolution 10-6 N 

Frictional force – measurement range 10-5 ÷1 N 

Friction force resolution 10-6 N 

Depth range 2·10-8÷10-4 m 

Depth resolution 2·10-8 m 

Stroke frequency range 0.001÷100 Hz 

Stroke length range 10-5÷10-3 m 

Stroke length resolution 250·10-8 m 

      
    2 

      
    1 

      
    3 

Fig. 6.1. The Nano-tribometer - front view, adapted from [61]. 
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The instrument base (1) contains two stepper motors for x and y directions and 
the electronic units. 
Two displacement modules, linear reciprocating and pin-on-disc, are available 
for static and dynamic friction measurements. The measuring head (Figure 6.2) 
is composed of a cantilever (4) with two associated optical sensors for the 
measurement of normal (5) and lateral (6) deflections and the head actuators 
(7).  
 

 
The friction tests were performed in the linear reciprocating mode which is 
appropriate for static friction measurements. As mentioned before, the single-
asperity geometry has been reproduced by a steel ball in contact with 
polyurethane flat. 
 
Method 
 
In this thesis the linear reciprocating module is used for studying the friction 
force in relation to sliding distance or time. A simplified sketch is depicted in 
Figure 6.3. The ball is glued on a stiff lever, which is part of a frictionless force 
transducer consisting of elastic springs and optical displacement sensors. The 
counter sample is attached to a holder which is fixed in the displacement module 
and is displaced in x-direction by the stepper motor.  
The normal load is applied through the ball. The friction force is determined 
during the test by measuring the deflection of the elastic arm.  

Fig. 6.2. Details of the measurement head, adapted from [61]. 

 6 
5 4 7
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Experimental details 

Steel-polyurethane (80 and 95 Shore A) contact pairs were studied. Prior to each 
experiment, the polyurethane surface was cleaned with water and dried in air. 
The experiments were performed at room temperature T ~ 22°C and humidity 
ranging from 10% to 20%.  
 The normal load was applied by descending the measuring head with an 
approaching velocity which can be varied from 100 to 1000 [µm/s]. It is worth 
emphasizing that even by applying the fastest approaching velocity the normal 
load can not be reached instantly. To apply the load will take a couple of seconds 
typically for a load of 500 [mN]. It is reminded that in the theoretical model a 
normal step load is applied in order to keep the equations analytically tractable. 
 Three cantilevers were available for different load ranges as indicated in 
Table 6.2. The cantilever identified by “high loads” has the largest stiffness in 
tangential direction and has been therefore chosen to measure accurately the 
tangential displacement prior macrosliding, so-called limiting displacement.  
 

Table 6.2 Cantilever specifications (adapted from [61]). 

Cantilever 
Fn stiffness 

[mN/μm] 

Estimated load 

range [mN] 

Ft stiffness 

[mN/μm] 

Estimated load 

range [mN] 

Low loads 0.1966 0.06 ÷ 196.6 0.0633 0.019 ÷ 63.3 
Medium 0.6088 0.186 ÷ 608.8 1.0033 0.306 ÷ 1003.3 
High loads 1.7075 0.521 ÷ 1707.5 3.3849 1.033 ÷ 3384.9 

 
In the friction experiments a certain velocity is applied to the displacement 
module and the friction force is recorded during the test. The function which 
describes the variation of friction force in time, up to the moment when 

Fig. 6.3. Working principle - simplified sketch, from [61]. 
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macrosliding is initiated, is one of the input parameters required to calculate the 
limiting displacement.  
 
6.1.2 Results 
 
The influence of the normal load and radius of steel ball on static friction was 
investigated. A polyurethane plate of 2 [mm] thickness was used as the counter 
sample. The applied velocity v was 0.01 [mm/s]. The ball-on-flat configuration 
and the associated coordinate system are depicted in Figure 6.4. 

Before showing the results of the experiments in comparison with the results of 
the theoretical model, an example of a measured friction signal is presented in 
Figure 6.5 (95 Shore A polyurethane sample). 
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Ff 

rubber 

    x 

   z    y 

Fig. 6.4. Ball-on-flat configuration and the 
associated coordinate system. 

Fig. 6.5. Coefficient of friction vs. limiting 
displacement measured signal. 
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It can be observed that the coefficient of friction increases to a maximum value, 
which is taken as the coefficient of static friction μs, after that it decreases to a 
stable value which corresponds to the coefficient of dynamic friction. 
The value of the tangential displacement corresponding to the maximum value 
for the coefficient of static friction is the limiting displacement δl. 
 The experimental  results which will be presented in this section can be 
interpreted using the information shown in Figures 6.6 and 6.7 with respect to 
the maximum pressure  (time instant t = 0 [s]) and the corresponding normal 
load as well as the corresponding initial contact area. 

 

Fig. 6.6. Normal load vs. maximum pressure. 
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Fig. 6.7. Initial contact area vs. maximum pressure. 
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Figure 6.8 shows the dependency of the coefficient of static friction on normal 
load and radius of the rigid ball. The results of the measurements performed on 
polyurethane 95 Shore A sample are plotted in comparison with the theoretical 
results predicted by the single-asperity static friction model previously described 
in Chapter 4.  
 

The material and interfacial layer parameters used in calculations are given in 
Table 4.6. In the theoretical model, an increasing tangential load is applied. 
Friction measurements reveal that the tangential load is an exponential function 
of time Ft (t) = c1·tc2. The constants c1 and c2 have been obtained by fitting the 
theoretical function with the measured tangential force at each applied normal 
load. These dependences are plotted in Appendix C, see Figure C.2, for the ball 
radius R = 1 [mm]; similar functions have been also obtained for R = 2 [mm]. It 
can be concluded that the tangential loading in the experiments corresponds to 
the tangential loading in the model.  
 A first observation with respect to the results plotted in Figure 6.8 is that 
the coefficient of static friction decreases with normal load. At low loads this 
decrease is more significant than at higher loads when the coefficient of static 
friction reaches a quite stable level. The same trend is observed for both radii of 
the ball. 
The second observation is related to the effect of the radius of the ball. The 
results indicate that the coefficient of static friction rises for larger radii of the 
ball. This behavior is attributed to the increase in the contact area, which causes 
larger friction forces at the same normal loads as can be observed in Figure 6.7. 
 The calculated values shown in Figure 6.8 have been determined using the 
algorithm presented in Figure 4.30 (Chapter 4). It can be concluded that the 

Fig. 6.8. Variation of the coefficient of static friction with normal load 
for two radii of the rigid ball, R = 1 [mm] and R = 2.5 [mm]. 
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theoretical results correlate rather well with the experimental results for both 
parameters examined. 
 Besides the coefficient of static friction, the limiting displacement is also 
an important parameter of the static friction regime. Figure 6.9 shows the 
measured and calculated limiting displacements corresponding to the 
coefficients of static friction plotted in Figure 6.8.  
It can be observed that higher normal loads require larger limiting 
displacements before macro-sliding. The predicted values of the theoretical 
model indicate a similar trend as the experimental results. However, the 
calculated values of the limiting displacement are typically larger than the 
measured values. A few possible reasons for these discrepancies are presented 
below. 
 

 
The deviations might be caused by the way the normal load is applied and due to 
the material characterization. First, in calculations the normal load is applied 
instantaneously (step load), while in the experiments this is not the case. It takes 
a few seconds until the desired load is reached, which gives time to the material 
to relax leading to an increase in  contact area and subsequently to a larger 
limiting displacement than the calculated value. The second possible cause is 
related to the material characterization. The parameters of the SLS model used 
in the calculations have been obtained from measured data at 5% strain which 
corresponds to the low normal load range. It has been observed that for instance 
at 50 % strain these parameters (elasticity of the spring and viscosity of the 
dashpot) decrease which means softening of the material (see Table C1 in 
Appendix C). The strains corresponding to the high loads in Figure 6.9 are up to 
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20%. Thus it is expected to have a larger limiting displacement than those 
calculated with the SLS properties at 5% strain.  
 
 

 
 
Friction experiments have been also carried out on softer polyurethane 

samples (80 Shore A, E = 33 [MPa]) in order to determine the influence of 
elasticity modulus on the coefficient of static friction.  
The tests were run at 0.05 [mm/s] velocity for several normal loads as shown in 
Figure 6.10. The results of the measurements are plotted in comparison with the 
values obtained with the developed static friction model. The input parameters 
are listed in Appendix C, see Table C.2 andC.3. The elasticity modulus of the 
polyurethane samples is given which is a more general indicator of the material 
stiffness. 
As expected and depicted in Figure 6.10, the coefficients of static friction are 
larger for the softer polyurethane sample. The curves describing the variation of 
the coefficient of static friction with normal loads for both materials follow the 
same trend as shown in Figure 6.10.  
The limiting displacement is plotted against the normal load for the two 
polyurethane samples in Figure 6.11. The softer polyurethane (E = 38 [MPa], 80 
Shore A) shows larger limiting displacements than the other polyurethane 
sample which is in agreement with the predictions of the model, although there 
are some deviations between the measured and the calculated values which 
might have one of the reasons presented before. 
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6.2 Multi-asperity static friction measurements 
 
Friction experiments have been also carried out on a rough rubber surface in 
contact with a smooth metallic counter surface in order to validate the multi-
asperity static friction model.  
The experimental set-up used for the friction tests is briefly described in the next 
section. Then the experimental results are discussed and compared with the 
theoretical predictions. 
 
6.2.1 Experimental set-up 
 
Friction experiments have been performed on the tribometer shown in Figure 
6.12. This equipment is suitable for carrying out experiments at relatively low 
pressure and very low velocities in a load-controlled contact situation. A 
description of the apparatus is provided below. The main parts of the tribometer 
are the normal force system, the friction force system and the specimen control 
system, as depicted in Figure 6.12. The normal force system comprises a piezo 
sensor and a piezo actuator and is able to apply and measure the normal load. 
This system is fixed on a lever by means of a coupling element which ensures the 
required stiffness in normal direction and flexibility in the other directions. 
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 The friction force measuring system is schematically shown in Figure 6.13. 
It is composed of a piezo sensor for measuring the friction force, a coupling 
element, a probe holder, a frame with associated elastic joints and the probe.  
 

 
The elastic joints are very thin letting the frame to move in the sliding direction 
with less energy dissipation. The coupling element is located between the piezo 
sensor and the probe holder and is meant to protect the piezo sensor against 

friction force 
system 

specimen control 
system 

normal force
system 

Fig. 6.12. Tribometer– constitutive parts, adapted from [60]. 

Fig. 6.13. Friction force measuring system (front view), adapted from [60]. 
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undesired potential moments which might occur during sliding.  
During a friction test the specimen is displaced by the moving table while the 
probe is fixed. The signal generated by the piezo sensor is recorded and 
converted in the final friction force signal. 

The specimen control system is used for positioning of the specimen in x 
and y direction, for moving it in the sliding direction and to align it in order to 
have a plan parallel movement. The main parts of the control system are the 
linear positioning stage for x and y direction, the tilting table and the specimen. 
The specifications of the equipment are listed in Table 6.3. 

 
Table 6.3 SFA specifications, from [60]. 

requested value realized value 
Parameter 

range precision range precision 

Normal force 0.1 ÷ 50 N 5 mN 0.1 ÷ 45 N 2 mN 

Friction force 0.1 ÷ 50 N 5 mN 0.1 ÷ 50 N 0.5 mN 

Sliding velocity 0 ÷ 20 mm/s 1 μm/s 0 ÷ 50 mm/s 1 μm/s 

Sliding movement 0 ÷ 20 mm 1 μm 0 ÷ 50 mm 1 μm 

Lateral movement 0 ÷ 20 mm 1 μm 0 ÷ 50 mm 1 μm 

Vertical movement 
- coarse 
- fine 

 
0 ÷ 50 mm 
0 ÷ 200 μm 

 
5 μm 

10 nm 

 
0.1 ÷ 50 N 
0.1 ÷ 50 N 

 
1 μm 
9 μm 

 

Experimental details 

Friction between a rough rubber plate and a smooth spherical-ended steel 
sample has been investigated in order to validate the multi-asperity static 
friction model, see Figure 6.14. The spherical ended steel sample has a large 
radius R = 38.1 [mm] which results in almost a flat on flat contact (multi-asperity 
contact) with the rubber plate and prevents the occurrence of the edge effect. 
 

   Fn 

vt     R 

Fig. 6.14. Friction tests configuration. 
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steel 
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The surface roughness of the polyurethane (95 Shore A) sample has been 
measured with an interference microscope as previously explained in Chapter 3, 
for details see section 3.4.1.  
 

 
The surface topography of the rubber specimen is shown in Figure 6.15. The 
measured height data were preprocessed and analyzed according to the 
procedure described by de Rooij [21], see also Chapter 3. The resulting surface 
parameters as well as the summit parameters are summarized in Table 6.4.  
The friction experiments were run at a low velocity of about 5 [μm/s], at 20°C and 
25% humidity.  
 
 
    Table 6.4 Surface and summit roughness parameters. 

Material A [m2] Ra [μm] β [μm] σs [μm] η [m-2] 

Polyurethane 95 Shore 8.85·10-7 0.24 28.6 0.51 5·109 

 
 
6.2.2 Results 
 
Friction experiments were carried out in the configuration depicted in Figure 
6.14. A recorded friction force vs. tangential displacement signal is illustrated in 
Figure 6.16 for an applied normal load of 0.5 [N].  

From this figure it can be seen that the friction force increases quickly to a 
maximum value corresponding to the static friction and to the limiting 
displacement then falls to a stable value, the so-called dynamic friction force. 

Fig. 6.15. Surface height data – polyurethane sample. 
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Similar friction experiments have been carried out for several normal loads in 
order to investigate the effect of pressure on the coefficient of static friction. The 
measurement results of these tests are presented in Figure 6.17 in comparison 
with the calculated results of the static friction model obtained using both 
statistical and deterministic approach.  
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Fig. 6.16. Recorded friction force vs. tangential 

displacement signal. 
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Due to the convergence problems encountered in the actual algorithm the results 
using the deterministic approach with bulk deformation is not presented for this 
case. The input parameters used in the calculations are listed in Appendix C, 
Table C.4.  
Figure 6.17 indicates a decrease of the coefficient of static friction with pressure 
in the considered range for both measured and calculated curves. At low 
pressures the results obtained using the deterministic approach resemble well 
the measured values. Increasing the pressure, according to the deterministic 
contact model the adjacent asperities merge into larger equivalent asperities. 
 

 
For instance in Figure 6.18 the local areas of the contacting asperities are plotted 
against the local loads for a total normal load of 2.1 [N] corresponding to a mean 
nominal contact pressure of 2.35 [MPa]. It can be observed that there is one 
large asperity denoted as “dominant” with a radius of 0.4 [mm] which carries 
almost the whole normal load and therefore will have the major contribution to 
the static friction force. 
Moreover, higher pressures imply larger bulk deformations which would result 
in smaller dominant asperities and, as a consequence, smaller coefficients of 
friction, see also Figure 5.20. This might be an explanation for the slower 
decreases of the coefficient of static friction compared with the experimental 
curve. 
The statistical approach underestimates the coefficient of static friction at low 
pressures. This is due to the assumption that all asperities have the same radius 
(mean radius) which is evaluated before the surfaces are in contact. This mean 
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Fig. 6.18. Local contact areas vs. local loads for Fn = 2.1 [N]; “dominant 
asperity” which has the major contribution in the load carrying capacity and as 
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radius β = 28.6 [μm] is smaller than the radius of the real asperities in contact. 
The deterministic model neglects the bulk deformation but takes into account 
real micro-contacts. The result is a good prediction of static friction at lower 
pressures. 
Assuming that there is overall contact between surfaces the single-asperity 
friction model can be used to calculate the coefficient of static friction. In this 
case the contact area is much larger than the real contact area determined by the 
contacting asperities or summits which results in a higher coefficient of static 
friction as shown in Figure 6.17. It can be concluded that, in this case, the system 
is clearly behaving as a multi-asperity contact. 
  

 
In Figure 6.19 the measured values of the limiting displacement are presented in 
comparison with the calculated values for the same pressure range as in Figure 
6.17. The values obtained using the deterministic approach with asperities are 
larger than the measured values. The statistical approach with summits 
underestimates the total limiting displacement due to the small mean summit 
radius. In the deterministic case the total limiting displacement is given by the 
limiting displacement of the dominant asperity.  It has been shown in Chapter 5 
that taking into account the bulk deformation results in smaller limiting 
displacements, which will shift the calculated values closer to the measured ones.  

The results strongly indicate that the surface description plays a 
significant role in the static friction model. The statistical approach provides a 
low limit to the static friction model while the deterministic model determines 
the upper limit, as schematically shown in Figure 6.20.  
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Conclusively, the developed friction model predicts the static friction force and 
the limiting displacement using an appropriate description of the surface 
topography modeled as a multi-asperity contact. 
 
 
6.3 Summary and conclusions 
 
In this chapter friction experiments carried out on rubber/steel specimens are 
presented. Single-asperity friction measurements have been performed on a 
nano-tribometer using a ball on flat configuration. The influence of normal load, 
geometry (radius of the ball) and rubber-like material stiffness on the coefficient 
of static friction and limiting displacement was experimentally investigated. The 
results of the tests were compared with the theoretical predictions. 
The results show a good correlation between the experimental results and the 
calculated values with respect to the variation of the coefficient of static friction 
with normal load and the radius of the ball. Larger radii of the ball result in 
higher coefficients of friction while higher normal loads determine smaller 
coefficients of friction.  
Conversely, the limiting displacement increases at higher loads and for larger 
radii of the ball. 
The coefficient of static friction decreases for “stiffer” materials, for instance 
polyurethane 95 Shore A (E = 133 MPa) compared with polyurethane 80 Shore A 
(E = 38 MPa).  
 Then, friction between a rough polyurethane sample and a smooth steel 
counterpart has been investigated in order to validate the multi-asperity static 
friction model. 
For the pressure range considered, the coefficient of static friction decreases with 
higher pressures. A faster decline in the coefficient of static friction is observed 

       Statistical model – summits 

  Deterministic model – 
equivalent asperities 

Real topography 

Fig. 6.20. Modeling the surface topography: statistical approach 
and deterministic approach. 
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in the experimental curve compared with the calculated curves. The 
deterministic approach, in which surface roughness is modeled by equivalent 
asperities, departs from the experimental predictions at higher pressures. This 
might be explained by the merging of adjacent asperities into larger “dominant 
asperities” which overestimate the real ones because the bulk deformation is not 
taken into account. The statistical approach, which uses summits that follow a 
Gaussian distribution, predicts smaller coefficients of static friction at lower 
pressure than the measured values. This is caused by the constant radius of the 
summits which is evaluated from the surface roughness measurements before 
the surfaces are brought in contact and underestimates the real values of 
“extreme summits”. 
Nevertheless, the values of the coefficient of static friction and certainly the 
physical effect are predicted well by the developed static friction model.  
 Conclusively, the developed single-asperity friction model predicts very 
well the static friction force while the limiting displacement is in rather good 
agreement with the experiments. The multi-asperity friction model, which 
comprises a statistical and a deterministic contact model, provides good 
estimations for the coefficient of static friction as well as for the limiting 
displacement. 
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Chapter 7  
 
 

Static friction model – application to 
rubber pad forming finite element 

simulations 
 

Introduction 
 

In this chapter the developed static friction model is applied to a 
rubber pad forming process. The model enables to obtain curve-
fits for the static friction force and limiting displacement as a 
function of various parameters. These curve-fits are further used 
as static friction model in a finite element simulation of the rubber 
pad forming process.  

 
 

7.1 Static friction model – results 
 
In order to implement the static friction model into finite element simulations, 
general equations describing the dependence of the coefficient of static friction 
(static friction force) and limiting displacement on the relevant parameters have 
to be obtained.  
 

Table 7.1. Input parameters static friction model. 

Parameter Symbol Value Unit 

Average roughness Ra 0.6·10-6 [m] 

Elasticity modulus of the rubber E 13.6·106 [Pa] 

Elasticity of the spring (SLS) g1 9·106 [N/m2] 

Elasticity of the spring (SLS) g2 108 [N/m2] 

Viscosity of the dashpot (SLS) η1 109 [N·s/m2

Elasticity of the spring (Maxwell) g3 107 [N/m2] 

Viscosity of the dashpot (Maxwell) η2 106 [N·s 

Thickness of the interfacial layer h 3·10-7 [m] 

Nominal area A 6.6·10-8 [m2] 

Normal load range Fn 6.6·10-5  -  6.6·10-2 [N] 

 
An example is presented in the following to illustrate the potential use of the 
static friction model. A nominally flat rubber surface is loaded against a 
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nominally flat rigid counter surface. The rubber surface has a certain roughness 
and the rigid surface is ideally smooth. If not mentioned somewhere else, the 
input parameters used in the calculations are those given in Table 7.1. 
It has been observed in the previous chapters that the largest microcontacts 
mainly determine the global static friction force. Therefore, in order to avoid the 
occurrence of such extreme asperities, the surface roughness in this study case 
has been numerically generated by assuming a Gaussian height distribution (see 
Figure 3.22) and an exponentially decreasing autocorrelation function. For each 
calculation, a new random rough surface is generated. 
 

 
 

Fig. 7.1. Variation of the static friction force with the average 
surface roughness Ra for several nominal pressures. 
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Fig. 7.2. Variation of the limiting displacement with average 
surface roughness Ra for several nominal pressures. 
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It has been shown in Chapter 5 that surface roughness does influence the static 
friction force and the limiting displacement. 
 In Figure 7.1 the surface roughness has been varied by modifying the average 
surface roughness Ra. The calculations have been done for a certain nominal 
pressure range.  
For the material and surface parameters considered, the static friction force as 
well as the limiting displacement increase at higher nominal pressures, while 
they decrease by increasing the surface roughness expressed by Ra, see Figures 
7.1 and 7.2.  
Two equations can be obtained inferred from the results presented in Figures 7.1 
and 7.2. First, the dependence of static friction force on surface roughness Ra 
and nominal pressure is given by 
 

 41−28110− ⋅⋅10= ..
ans RpF                 (7.1) 

 
with Ra in [µm] and pn in [Pa]. Second, the liming displacement as a function of 
surface roughness and nominal pressure reads: 
 

 450−55010− ⋅⋅10⋅5= ..
anl Rpδ                       (7.2) 

 
These equations provide input data with respect to static friction for finite 
element simulation of the rubber pad forming processes. 
 

 
The influence of the material in terms of “elasticity modulus” of the rubber on 
the static friction force and limiting displacement is shown in Figures 7.3 and 
7.4. 
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Fig. 7.3. Variation of the static friction force with the elasticity 
modulus E at several nominal pressures. 
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It can be observed that higher elasticity moduli correspond to stiffer materials 
which result in lower values of the static friction force and limiting displacement. 
 

 
The following equation describing the dependence of the static friction force on 
the elasticity modulus of the rubber and nominal pressure can be obtained from 
the results plotted in Figure 7.3:  
 

2−0717− ⋅⋅10⋅4= EpF ns
.                    (7.3) 

 
with E in [MPa] and pn in [Pa]. Similarly, the limiting displacement can be 
expressed as a function of the elasticity modulus and nominal pressure as: 
 
 2−2206− ⋅⋅10⋅4= Epnl

.δ                (7.4) 
 

It is worth reminding that the point which corresponds to the inception of 
gross sliding in the friction force-displacement graph (see Figure 2.4) has the 
coordinates given by the pair (limiting displacement, static friction force). The 
variation of this point with the average surface roughness Ra is shown in Figure 
7.5. It is clear that surfaces with a lower roughness cause higher static friction 
forces and limiting displacements. 

The same point (limiting displacement, static friction force) is presented 
in Figure 7.6 as a function of the elasticity modulus E. It can be observed that 
surfaces with a lower E result in higher values of the static friction force and 
limiting displacement. 
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Fig. 7.4. Variation of the static friction force with the elasticity 
modulus E at several nominal pressures. 
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The effect of nominal pressure on the static friction force vs. limiting 
displacement is shown in Figure 7.7. Both static friction force and limiting 
displacement increase at high nominal pressures. 
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Fig. 7.5. Static friction force vs. limiting displacement as a 
function of average surface roughness Ra. 
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Fig. 7.6. Static friction force vs. limiting displacement as a 
function of elasticity modulus E. 
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The results presented so far show the potential use of the developed static 
friction model.  
Conclusively, the static friction model enables the determination of the 
parametric equations regarding the coefficient of static friction and limiting 
displacement needed to describe static friction in finite element simulations of 
rubber pad forming processes. As a result an optimal selection of the material 
and process parameters can be made in order to obtain a small static friction 
force as required in these processes. Additionally, the influence of the static 
friction on the formed shape or on the springback can be estimated. 
 
 

7.2 Finite Element model 
 
The geometry depicted in Figure 7.8 [63] has been used to simulate a rubber pad 
forming process with the finite element program MARC. It comprises a rigid 
punch, a sheet and a rubber tool. In this configuration the deformable tool is 
made of rubber with a shear modulus G of 4.52 [MPa]. The sheet is made of 
aluminium.  
During forming the punch descends while the metal sheet deforms due to the 
pressure created by the compressed rubber tool. The deformed shape is depicted 
in Figure 7.9. 
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Fig. 7.7. Static friction force vs. limiting displacement as a function of 
nominal pressure pn. 
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The radius of curvature denoted Rf of the formed strip is one of the parameters 
which is industrially the most relevant. Thus, this radius Rf is investigated for 
two cases. First, the rubber pad forming process is simulated using a Coulomb 
friction, i.e. constant coefficient of static friction with μ = 0.3. Second, the 
coefficient of static friction is taken as a function of nominal pressure, average 
roughness and elasticity modulus of the rubber as predicted by the developed 

rubber 
tool 

metal sheet  punch 

Fig. 7.8. Finite element model – geometry, adapted from [63]. 

Fig. 7.9. Deformation of the metal sheet and rubber tool due to the 
descending of the punch, adapted from [63]. 
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static friction model. In this example Ra = 0.3 [μm] and E = 13.56 [MPa], 
resulting in μ = 0.0082 · pn

0.28. In the FEM model, the preliminary displacement is 
not taken as a function of pressure for reasons of simplicity. 
 

 
The resulting geometry of the strip is shown in Figure 7.10 for the two cases 
considered. 
A difference in the radius of curvature Rf of the formed strip can be noticed. The 
fitted radius Rf is about 28.1 [mm] for the case when Coulomb friction is used 
(case 1). If the developed static friction model is used instead, the radius of 
curvature Rf is 27.4 [mm] (case 2). 
This difference is more pronounced for a rubber pad surface with a low 
roughness. In this case the coefficient of static friction can reach relatively high 
levels. 
 
 
 
 

Fig. 7.10. Resulting  geometry of the strip: case 1 – Coulomb friction; 

case 2 - developed static friction model, adapted from [63]. 

      case 2 

case 1 

Rf 
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7.3 Summary and conclusions 
 
The developed static friction model is applied to a rubber pad forming process.  
Curve-fits can be obtained from the developed model for the static friction force 
(coefficient of static friction) and limiting displacement as a function of various 
parameters.  
These data are used as input parameters in the finite element simulation of 
rubber pad forming processes.  
An example of a finite element simulation of a rubber pad forming process is 
shown in this chapter. A Coulomb friction model and the developed static 
friction model are used in the simulations and then compared. The results of the 
simulations show that by using the static friction model instead of the very often 
applied Coulomb friction model has a significant effect on the radius of 
curvature of the formed strip.  
The surface roughness of the rubber pad will influence to a large extent the 
geometry of the strip due to its effect on the friction level. 
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Chapter 8  
 
 

Conclusions and recommendations 
 
 

8.1. Conclusions 
 

The theoretical modeling and experimental investigations of static friction 
in rubber/metal contact have been presented in the previous chapters. The main 
conclusions of the research are summarized in this section. 
 
Chapter 2 - literature survey 

• The main characteristic parameters of the static friction regime are the static 
friction force and the limiting displacement.  
• Two temperature-related static friction mechanisms have been reported in 
the literature for the contact between metallic surfaces, namely the creep of 
asperities at low temperatures and welding of asperities at higher temperatures. 
• As a result of the experimental evidence, Mindlin’s approach of a contact area 
comprising a stick and a slip zone, which evolve until gross sliding occurs, has 
been chosen to describe the mechanism of static friction between rubber and 
metal bodies in contact. 
• Experimental results reported in the literature showed that the static friction 
regime in contact of metallic as well as rubber surfaces depends on several 
parameters as pressure, dwell time, temperature, and surface topography.  
 
Chapter 3 - Contact of surfaces in rubber pad forming processes 

• The relevant properties of the contacting bodies in rubber pad forming 
processes in terms of mechanical properties, surface energy and roughness have 
been determined. 
• Depending on the ratio of real contact area to nominal contact area, different 
approaches can be used to model the contact of real bodies. When the contact 
area is a small fraction of the nominal contact area, a multi-summit model (for 
instance Greenwood-Williamson) is appropriate. At the other extreme, when the 
real contact area almost equals the nominal contact area, a single (macro) 
asperity model is suitable. The intermediate case can be modeled using a multi-
asperity contact which takes into account the asperity interaction and the bulk 
deformation. 
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Chapter 4 – Single asperity static friction model 

• A single-asperity static friction model has been developed for rubber/metal 
contacts. In this model, friction is attributed to the shear of a thin interfacial 
layer. 
• A mechanism similar to that described in Mindlin’s theory is assumed to take 
place in rubber-metal asperity contact.  
• The viscoelastic behaviour of the rubber bulk is incorporated into the static 
friction model by using a mechanical model. A method has been developed for 
quantifying the parameters of the mechanical model. 
• At low loads adhesion plays a significant role. Therefore, it has been modeled 
by a modified JKR theory, which takes into account the viscoelastic behavior of 
the rubber. 
• A parametric study is presented regarding the influence of several parameters 
such as normal load, material parameters, geometry (radius of the sphere), 
thickness of the interfacial layer on the static friction force (coefficient of static 
friction) as well as on the preliminary displacement.  
• The results of calculations indicate that small coefficients of static friction 
correspond to large normal loads (or contact pressures), small radii of asperities, 
and to thick interfacial layers. The limiting displacement is larger for high 
normal loads, large asperities and thin interfacial layers. 
 
Chapter 5 – Multi asperity static friction model 

• A multi-asperity static friction model has been developed based on the 
behavior of individual micro-contacts.  
• Two approaches have been used to model the contact between a viscoelastic 
surface and rigid flat. The statistical or multi-summit approach offers a 
simplified solution, based on independent summits. The multi-asperity or 
deterministic model is a more realistic approach which takes into account 
merging of asperities at larger loads as well as the bulk deformation.  
• The deterministic approach predicts larger static friction forces and limiting 
displacements than the statistical approach. 
• The global frictional behavior depends on the friction force of individual 
asperities and is mainly determined by a few large microcontacts. This means 
that the microgeometry of the surface is the decisive factor for the frictional 
behavior.  
• An accurate multi-asperity model is therefore very important for a good 
prediction of friction. 
• In general, rougher surfaces result in smaller coefficients of static friction. 
 
Chapter 6 – Experimental results and validation of the static friction models 

• Friction experiments have been carried out on rubber/steel specimens in order 
to validate the static friction models. 
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• Single-asperity friction measurements have been performed on a nano-
tribometer using a ball on flat configuration. The influence of normal load, 
geometry (radius of the ball) and stiffness of the rubber on the coefficient of 
static friction and limiting displacement was experimentally investigated.  
• The results show a good agreement between the experimental results and the 
calculated values with respect to the coefficient of static friction. Larger radii of 
the ball result in higher coefficients of friction while higher normal loads 
determine smaller coefficients of friction. Conversely, the limiting displacement 
increases at higher loads and for larger radii of the ball. The coefficient of static 
friction decreases for “stiffer” materials. 
• Friction between a rough polyurethane sample and a smooth steel counterpart 
(multi-asperity contact) was experimentally investigated in order to validate the 
multi-asperity static friction model. 
• For the pressure range considered, the coefficient of static friction decreases 
with higher pressures. A faster decline in the coefficient of static friction is 
observed in the experimental curve compared with the calculated curves. 
•  The deterministic approach without bulk deformation overestimates the 
experimental predictions at higher pressures. This is explained by the merging of 
adjacent asperities into larger “dominant asperities” in the model which 
overestimate the size of the microcontacts. 
• The statistical approach underestimates the coefficient of static friction at 
lower pressures. This is caused by an underestimation of the size of the 
microcontacts in the model. Nevertheless, the values of the coefficient of static 
friction and certainly the physical effect are predicted well by the developed 
static friction model.  
• The developed single-asperity friction model predicts very well the static 
friction force while the limiting displacement is in good agreement with the 
experiments. The multi-asperity friction model, which comprises a statistical 
and a deterministic contact model, provides good estimations for the coefficient 
of static friction as well as for the limiting displacement. 
 
Chapter 7 – Static friction model with application to rubber pad forming finite 
element simulations 

• The developed static friction model is applied to a rubber pad forming process.  
• Curve-fits can be obtained from the multi-asperity model for the static friction 
force (coefficient of static friction) and limiting displacement as a function of 
various parameters. These data are used as input parameters in the finite 
element simulation of a rubber pad forming process.  
• An example of a finite element model describing a rubber pad forming process 
is shown. A Coulomb friction model and the developed static friction model are 
used in the simulations. The results reveal that a low level of the coefficient of 
static friction, as predicted by the static friction model for rough surfaces, 
slightly influences the finite element simulations with respect to the radius of 
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curvature of the formed strip. If the roughness of the rubber pad is lower, it is 
expected that the predicted curvature of the formed strip will be significantly 
influenced by the chosen model. 
 
 

8.2 Recommendations 
 
• It is recommended that for the case of a rough rigid surface contacting the 
rubber, the ploughing component to be investigated. 
• The ploughing component can be studied experimentally by using the reverse 
configuration, a rigid ball pressed against a viscoelastic flat. Besides this, a 
suitable model should be developed. 
• The viscoelastic behavior of the rubber has been modeled by a relatively simple 
mechanical model (Standard Linear Solid). Complex models can describe the 
viscoelastic behavior of rubber more accurately. For instance, the viscoelastic 
behavior of rubber should be modeled as strain dependent. 
• A Maxwell model has been used to describe the properties of the interfacial 
layer. Indentation tests can be used in the future to characterize the surface 
layers experimentally. 
• In order to be able to compare accurately the results of the friction 
experiments with the theoretical results in a load-controlled case, the history of 
the normal load has to be known. This means that the real load path has to be 
used in the calculations instead of the step load function. This will lead to 
complex solutions, which are analytically non-tractable.  
• The algorithm used in the multi-asperity contact has to be improved in order 
to converge for a wide range of the input parameters when bulk deformation is 
taken into account. 
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Appendix A 
 

Material and surface properties 
 
 
 
Rubber tool 
 

Table A.1. Mechanical properties of the polyurethane samples. 

Properties 
Fibroflex 

80 Shore A 

Fibroflex 

90 Shore A 

Fibroflex 

95 Shore A 
Units 

Density 1070 1110 1130 kg/m3 

Hardness 80 90 95 Shore A 

Max. deformation 35 30 25 % 

Max. working temperature +70 +70 +70 °C 

Modulus of elasticity 38⋅106 70⋅106 133⋅106 N/m2 

Ultimate tensile strength 34⋅106 38⋅106 45⋅106 N/m2 

Elongation 490 430 380 % 

 
 
Workpiece 
 

Table A.2. Mechanical properties of the metal sheet. 

Properties ALCLAD 2024 Units 

Density 2770 kg/m3 

Hardness (core) 132 HV 

Modulus (tensile)  72⋅109 N/m2 

Tensile yield strength 0.2 270⋅106 N/m2 

Ultimate tensile strength 405⋅106 N/m2 

 
 
Eliptical paraboloids  
 
In the calculations, the equivalent asperities are modeled by elliptical 
paraboloids. It is assumed that the normal contact area and the volume of the 
contacting part of the elliptical paraboloid and of the original microcontact are 
the same for reasons of load and energy equivalence. Based on these 
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assumptions, the equivalent paraboloid is defined by the radius Rx in x direction 
and radius Ry in y direction which are given by: 
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where Aasp is the measured contact area of  asperity, Vasp is the asperity volume 
and λasp is the ellipticity ratio of asperity [23]. 
The height of the equivalent asperity has been determined by Jamary [62] and is 
given by equation 
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where hcut-off is the contact separation or the cut-off of contacting surfaces, Lx is 
the diameter of the cross-sectional elliptical contact area in x direction. 
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Appendix B 
 

Single-asperity static friction model 
 
 
 
B.1 Normal contact of a viscoelastic sphere with a rigid 
flat 
 
In a load-controlled case it is considered that the normal load varies in time 
according to 
 
 ( ) ( )tHFtF nn ⋅=                            (B.1) 

 
where t is the time and H(t) is the Heaviside step function or the unit step 
function defined as: 
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For  t > 0 the contact radius av can be written as 
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and the pressure distribution is expressed  
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In a displacement-controlled case, the normal displacement or indentation is 
taken as 
 
 ( ) ( )tHt nn ⋅= δδ                  (B.5) 

 
In this case the contact radius is constant and equal to 
 

 [ ] 2/1
nv Ra δ⋅=                                      (B.6) 
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while the pressure distribution and normal load changes in time according to 
                       

 ( ) 224),( rat
R

trp vv −⋅⋅
⋅

= ψ
π

                 (B.7) 

                   
                              

 ( ) 3⋅⋅
⋅3
8

= vn at
R
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B.2 Normal contact including adhesion of a viscoelastic 
sphere with a rigid flat (modified JKR theory) 
 
The modified equations of the JKR theory are presented for a viscoelastic-rigid 
couple in a load-controlled case. The applied normal load is given by equation 
(B.1). For t > 0 the following equations give the contact radius a1v, the apparent 
normal load Fn1 and the pressure distribution p1v(r) when adhesion is taken into 
account: 
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where Wv is the viscoelastic work of adhesion (see equation 4.24), Fn1 is the 
apparent Hertzian load which would determine a contact radius a1v. The 
pressure distribution p1v(r) comprises a tensile zone close to the edge of the 
contact area and a central compressive part whose radius acv is given by: 
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Similarly, the equations which apply in a displacement-controlled case can be 
determined by replacing the elastic constant in the elastic solution (JKR theory) 
by the relaxation function ψ(t).  
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Appendix C  
 

Experimental results and validation of the static 
friction models 

 
C1 Interfacial layer.  
 
The thickness of the interfacial layer has been measured using a Scanning 
Electron Microscope (SEM).  
 

Fig. C.1. SEM measurements; visualization of the interfacial layer 
deposited on the polyurethane sample (95 Shore A). 

 

 

rubber sample 

  interfacial layer 

 

interfacial layer rubber sample 
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A very thin layer of chromium (about 30 nm) has been deposited on the 
polyurethane surface. The visualization of the interfacial layer is shown in Figure 
C.1 for two magnifications, x120 and x8000. The thickness of the interfacial layer 
was measured on few polyurethane samples 95 Shore A. The measurements 
indicated values in the range 0.1 ÷ 0.8 [μm].  
 
             
C.2 Single-asperity friction results  
 
C.2.1 Tangential load vs. time at various normal loads 

In the single-asperity static friction model one of the input parameters is an 
increasing tangential load Ft(t)  which is applied until macro-sliding occurs. In 
order to validate the theoretical model this function Ft(t) has to be determined.  
 

 
The experimental curves, which were obtained on the nano tribometer, are fitted 
in Figure C.2 for several normal loads. The results indicate that the tangential 
load is an exponential function of time, Ft = c1· tc2 with c1 ranging from 4.8·10-4 to 
7.6·10-4 and c2 from 1 to 1.3. 
 
 
C.2.2 Influence of the strain on the parameters of the Standard 
Linear Solid 
 
 In order to determine the parameters of the Standard Linear Solid model, 
which describes the viscoelastic behavior of rubber, relaxation tests have been 
performed on the polyurethane samples. A comprehensive description of these 
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Fig. C.2. Applied tangential force vs. time (fitted curves) at 
various normal loads. 
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tests has been given in section 3.2.1.  
Table C.1. Standard Linear Solid parameters. 

Material 
g1 

[N/m2] 

g2 

[N/m2] 

η 

[N·s/m2] 

Strain 

% 

Fibroflex 80 Shore A 2.7⋅107 3.1⋅108 7.6⋅109 
Fibroflex 95 Shore A 5.7⋅107 2.1⋅108 8.6⋅109 

5 

Fibroflex 80 Shore A 6.8⋅106 5.5⋅107 1.8⋅199 
Fibroflex 95 Shore A 1.7⋅107 5.9⋅107 2.2⋅109 50 

 
By fitting the experimental curves with the theoretical functions, as explained in 
section 4.2.1, the parameters of the mechanical model are obtained.  
In Table C.1 these parameters are listed for 5% and 50% strain applied over a 
period of time of about 3 minutes. It can be observed that the parameters of the 
mechanical model (SLS) change at different applied strains. A decrease of the 
elasticity modulus of the springs is noticed for 50% strain. The viscosity of the 
dashpot decreases with increasing strain as well. 
 
C.2.3 Input parameters of the single-asperity static friction model 
 
The input parameters used in the single-asperity static friction model are given 
in Table C.2 for the polyurethane 95 Shore A (E = 138 MPa) and in Table C.3 for 
the polyurethane 80 Shore A (E = 33 MPa). 
 

Table C.2. Input parameters static friction model– polyurethane 95 Shore A. 

Parameter Symbol Value Unit 

Elasticity of the spring (SLS) g1 6.4·107 [N/m2] 

Elasticity of the spring (SLS) g2 2.3·108 [N/m2] 

Viscosity of the dashpot (SLS) η1 1.5·109 [N·s/m2] 

Elasticity of the spring (Maxwell) g3 107 [N/m2] 

Viscosity of the dashpot (Maxwell) η2 106 [N·s /m2] 

Velocity v 10-5 [m/s] 

Radius R 10-3 [m] 

Thickness of the interfacial layer h 2·10-7 [m] 
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Table C.3. Input parameters static friction model– polyurethane 80 Shore A. 

Parameter Symbol Value 
Unit 

 

Elasticity of the spring (SLS) g1 3.1·107 [N/m2] 

Elasticity of the spring (SLS) g2 2.4·108 [N/m2] 

Viscosity of the dashpot (SLS) η1 9.7·109 [N·s/m2] 

Elasticity of the spring (Maxwell) g3 106 [N/m2] 

Viscosity of the dashpot (Maxwell) η2 105 [N·s /m2] 

Velocity v 5·10-5 [m/s] 

Radius R 10-3 [m] 

Thickness of the interfacial layer h 2·10-7 [m] 

 
 
C.3 Multi-asperity friction results  
 
The results of the friction experiments carried out on the rough polyurethane 
surfaces against the smooth metallic counter surfaces were compared in section 
6.2.2 with the prediction of the theoretical friction model. The input parameters 
used in the calculations are listed in Table C.4. For this polyurethane sample the 
thickness of the interfacial layer was about 0.7 [μm]. 
 

Table C.4 Values of the input parameters. 

Parameter Symbol Value Unit 

Elasticity of the spring (SLS model) g1 6.4·107 [N/m2] 

Elasticity of the spring (SLS model) g2 2.3·108 [N/m2] 

Viscosity of the dashpot (SLS model) η1 1.5·109 [N·s/m2] 

Elasticity of the spring (Maxwell g3 107 [N/m2] 

Viscosity of the dashpot (Maxwell η2 106 [N·s/m2] 

Thickness of the interfacial layer hi 0.7·10-6 [m] 

Nominal area An 8.85·10-7 [m2] 

Velocity v 5·10-6 [m/s] 
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Summary 
 

 
 

A static friction model suitable for rubber-metal contact is presented in 
this dissertation. 
In introduction, the motivation and the aims of the research are introduced 
together with the background regarding the related industrial application, which 
is the rubber pad forming process. 

Chapter 2 deals with definition, mechanisms and parameters which 
characterize static friction. The parameters required to describe the static friction 
regime are defined, starting with a short historical background of friction. The 
mechanisms responsible for static friction as well as for dynamic friction are 
presented. Then, the influence of several parameters such as pressure, tangential 
displacement, roughness, contact time, and temperature on this preliminary 
stage of friction is discussed. A literature survey is presented in this respect for 
the contact types which are of interest in rubber pad forming, namely: 
rubber/metal and metal/metal. 

In Chapter 3 the tribological system is reviewed. The viscoelastic 
properties of the rubber pad and the related measurement techniques are 
presented. Since adhesion is important in rubber friction, the surface free energy 
of materials has been investigated. Surface roughness plays a significant role in 
friction between the rubber pad and the metal sheet. Therefore, surface 
roughness parameters are introduced together with the measurement techniques. 
Depending on the relation between the real contact area and the apparent contact 
area, various approaches can be used to model the contact between the rubber 
pad and the metal sheet. These approaches are briefly discussed.  

Chapter 4 focuses on the single-asperity static friction model. First, the 
normal contact between a viscoelastic sphere and a rigid flat is modeled using a 
modified Hertz theory, in which the viscoelastic behavior is incorporated 
through a mechanical model. Then, when a tangential load is subsequently 
applied, a mechanism similar to that described by Mindlin’s theory is assumed to 
take place in the contact area. At low loads adhesion plays an important role. Its 
effect has been modeled according to the JKR theory. A factor has been included 
which accounts for the work of adhesion of viscoelastic materials. Friction is 
attributed to the shear of the interfacial layer which separates the bodies in 
contact.  The developed static friction model is based on the above-mentioned 
contact models. Furthermore, a parametric study is presented regarding the 
influence of several parameters on the static friction force and limiting 
displacement.  
 In Chapter 5 the single-asperity static friction model is extended to the 
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multi-asperity case, first, by using a statistical approach. This multi-summit 
approach is usually suitable for cases where the real contact area is a small 
fraction of the apparent contact area. Then, a multi-asperity approach is used 
further in modeling static friction between a rough viscoelastic surface and a 
smooth rigid plane. A parametric study is performed and the results obtained 
using these approaches are compared. The detailed microgeometry of the rubber 
surface is influencing the frictional behavior to a large extent. 
 The experimental validation of the developed single-asperity and multi-
asperity static friction models is presented in Chapter 6. Single-asperity friction 
measurements have been carried out on a nano-tribometer using a ball-on-flat 
configuration. The influence of several parameters such as normal load, radius of 
the ball and Shore hardness upon static friction was examined. Then, the multi-
asperity static friction model is experimentally validated. The theoretical 
predictions are in general agreement with the experimental results. 
 In Chapter 7 the developed friction model is used to obtain the curve-fits 
which are needed for the implementation of the static friction model in the finite 
element simulation of the rubber pad forming process. The results of the finite 
element simulations of the rubber pad forming process indicate that the static 
friction model has an effect on the radius of curvature of the formed strip.
 Finally, the conclusions and recommendations resulting from the 
theoretical and experimental investigation of the static friction in rubber/metal 
contact are presented. 
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